Тепловизор работа: Тепловизоры. Разновидности и применение. Как выбрать. Особенности

Содержание

ПРИНЦИП РАБОТЫ ТЕПЛОВИЗОРА | Pulsar

В инженерной практике существует понятия объекта и фона. Объектом обычно выступают предметы, которые необходимо обнаружить и рассмотреть (человек, автотранспорт, животное и т.п.), фоном является все остальное, не занятое объектом наблюдения, пространство в поле зрения прибора (лес, трава, здания и т.п.)

Действие всех тепловизионных систем основано на фиксировании температурной разницы пары «объект/фон» и на преобразовании полученной информации в изображение, видимое глазом. Вследствие того, что все тела вокруг нагреты неравномерно, складывается некая картина распределения ИК-излучения. И чем больше разница интенсивности инфракрасного излучения тел объекта и фона, тем более различимым, то есть контрастным, будет изображение, получаемое тепловизионной камерой. Современные тепловизионные приборы способны обнаруживать температурный контраст 0.015…0.07 градусов.

В то время как подавляющая часть приборов ночного видения, работающих на основе электронно-оптических преобразователей (ЭОП) или матриц КМОП/ПЗС, улавливают инфракрасное излучение с длиной волны в диапазоне 0,78…1 мкм, что лишь немногим выше чувствительности человеческого глаза, основным рабочим диапазоном тепловизионной аппаратуры являются 3…5,5 мкм (средневолновой ИК-диапазон, или MWIR) и 8…14 мкм (длинноволновой ИК-диапазон, или LWIR). Именно здесь приземные слои атмосферы прозрачны для ИК-излучения, а излучательная способность наблюдаемых объектов с температурой от -50 до +50ºС максимальна.

 

Спектральный диапазон и окна прозрачности атмосферы

Тепловизор — электронный наблюдательный прибор, строящий изображение разности температур в наблюдаемой области пространства. Основой любого тепловизора является болометрическая матрица (сенсор), каждый элемент (пиксель) которой с высокой точностью замеряет температуру.Тепловизор — электронный наблюдательный прибор, строящий изображение разности температур в наблюдаемой области пространства.

Основой любого тепловизора является болометрическая матрица (сенсор), каждый элемент (пиксель) которой с высокой точностью замеряет температуру.

Достоинство тепловизоров в том, что им не требуются внешние источники освещения – сенсор тепловизора чувствителен к собственному излучению объектов. Вследствие этого тепловизоры одинаково хорошо работают днем и ночью, в том числе в абсолютной темноте. Как отмечалось выше, плохие погодные условия (туман, дождь) не создают непреодолимых помех тепловизионному прибору, в то же время делая обычные ночные приборы совершенно бесполезными.

Упрощенно, принцип работы всех тепловизоров описывается следующим алгоритмом:• Объектив тепловизора формирует на сенсоре температурную карту (или карту разности мощности излучения) всей наблюдаемой в поле зрения области• Микропроцессор и другие электронные компоненты конструкции считывают данные с матрицы, обрабатывает их и формируют на дисплее прибора изображение, являющееся визуальной интерпретацией этих данных, которое напрямую или через окуляр рассматривает наблюдатель.

В отличие от приборов ночного видения на базе электронно-оптических преобразователей (назовем их аналоговыми), тепловизоры, как и цифровые приборы ночного видения, позволяют реализовать большое количество пользовательских настроек и функций. Например, регулировка яркости, контраста изображения, изменение цвета изображения, ввод в поле зрения различной информации (текущее время, индикация разряда батарей, пиктограммы активированных режимов и т.п.), дополнительное цифровое увеличение, функция «картинка в картинке» (позволяет в отдельном небольшом «окне» выводить в поле зрения дополнительное изображение объекта целиком или какой-то его части, в том числе увеличенное), временное отключение дисплея (для энергосбережения и маскировки наблюдателя за счет исключения свечения работающего дисплея).

Для фиксации изображения наблюдаемых объектов в тепловизоры могут быть интегрированы видеорекордеры. Можно реализовать такие функции как беспроводная (радиоканал, WI-FI) передача информации (фото, видео) на внешние приемники или удаленное управление прибором (например, с мобильных устройств), интеграция с лазерными дальномерами (с вводом информации от дальномеров в поле зрения прибора), GPS-датчиками (возможность фиксации координат объекта наблюдения) и т. д.

Тепловизионные прицелы по отношению к «аналоговым» ночным прицелам для охоты также имеют ряд отличительных черт. Прицельная метка в них обычно «цифровая», т.е. изображение метки во время обработки видеосигнала накладывается поверх изображения, наблюдаемого на дисплее, и перемещается электронным образом, что позволяет исключить из состава прицела механические узлы ввода поправок, входящие в состав ночных аналоговых или дневных оптических прицелов и требующие высокой точности изготовления деталей и сборки этих узлов. Дополнительно это исключает такой эффект как параллакс, т.к. изображение объекта наблюдения и изображение прицельной сетки находятся в одной плоскости – плоскости дисплея. В цифровых и тепловизионных прицелах может быть реализовано хранение в памяти большого количества прицельных сеток, имеющих различную конфигурацию и цвет, удобная и быстрая пристрелка с помощью функций «пристрелка одним выстрелом» или «пристрелка в режиме Freeze», функция автоматического ввода поправок при изменении дистанции стрельбы, запоминание координат пристрелки для нескольких оружий, индикация наклона (завала) прицела и многое другое.

 

Принцип работы тепловизора

Тепловизионные приборы очень быстро приобрели большую популярность и стали востребованными во многих отраслях промышленности, коммунальной сфере и для частного использования благодаря способности идентифицировать тепловые волны.

Как работает прибор

Каждый предмет как одушевленный, так и неодушевленный, независимо от того перемещается он или находится в статическом положении, излучает электромагнитные волны, которые перекрывают достаточно широкий частотный диапазон, в том числе захватывают инфракрасный спектр. Излучение в таком спектре еще называется тепловым. Его интенсивность зависит от температуры объекта и практически не меняется от степени освещения.
Тепловизор представляет собой прибор, способный не только фиксировать тепловое излучение объектов, но и визуализировать его в доступном для человеческого глаза виде.

Для этого он комплектуется специальным объективом. Линзы этого объектива отличаются уникальной способностью беспрепятственно пропускать тепловое излучение, в то время как обычное стекло задерживает ИК-лучи.  
 
С помощью системы линз инфракрасные волны позиционируются на специальную матрицу. Она представляет собой совокупность датчиков, способных реагировать на тепловые волны. Информация в виде токовых посылок считывается процессором с матрицы и преобразуется в видеосигнал, выводимый на устройство отображения, которым может быть экран прибора или внешний монитор. Из-за разности температуры окружающей среды и объекта на дисплее получается контур изображения. В современных устройствах разные волны в зависимости от температуры отображаются разным цветом.  
Для удобства пользователя поверх кадра может выводиться шкала, которая отображает соответствие цвета любой точки изображения значению абсолютной температуры наблюдаемого объекта. Предоставляется возможность также обозначать максимальное и минимальное значение температуры на изображении. Точность вычисления современных приборов составляет 0,05 градуса, поэтому картинка получается максимально реалистичной. Тепловизор настраиваются на работу с тепловыми волнами, имеющими длину 3,0–5,5 мкм, поэтому приземный слой атмосферы для него получается почти прозрачным, а природные явления в виде тумана, дождя, снега и дыма минимально влияют на чувствительность. 

Типы детекторов

Матрица представляет собой микросхему с набором специальных диодов, отличающихся светочувствительностью, и свойством менять сопротивление в зависимости от интенсивности инфракрасных лучей. Благодаря современным технологиям матрица имеет компактные размеры и отличается низким энергопотреблением. Для получения качественной картинки необходимо минимизировать цифровой шум, поэтому конструктивно предусмотрены программные и аппаратные средства для ее охлаждения. В самых современных приборах ПЗС-матрица заменена на микроболометрическую, которая не требует охлаждения.

Изменение сопротивления элементов такой микросхемы фиксируется с большой точностью практически во всем диапазона ИК-излучения.  

Область использования

 

Способность тепловизора измерять разницу температуры и визуализировать таким образом тепловое излучение востребована во многих областях деятельности человека. Использование прибора для энергоаудита
предусматривает:
  • контроль степени теплоизоляции промышленных и коммунальных объектов, дверных и оконных проемов, а также подвалов и крыш домов;
  • измерение теплопроводности материалов;
  • нахождение точек утечки теплопотерь в домах и тепловых системах;
  • определение разгерметизации инженерных систем: вентиляции, кондиционирования, а также теплоснабжения и электроснабжения;
  • обследование фасадов домов в отопительный период;
  • диагностику дымовых труб и теплообменников.  
Свойство тепловизоров идентифицировать предметы по инфракрасному излучению делает их намного эффективнее приборов ночного видения, поэтому они востребованы в разных сферах, в том числе военной и судоходной, с целью контроля и обеспечения безопасности.
 

Незаменимый прибор для ведения ночной охоты в любую погоду, а также в путешествиях для ориентации в ночное время и поиска заблудившихся в лесу людей. Является практичным помощником и для автовладельцев, так как позволяет увидеть объекты намного дальше зоны, освещенной фарами.

Популярные бренды

Производитель Flir представляет широкий ассортимент тепловизоров специальными модельными линейками для диагностического оборудования, строительства, охранных систем, коммерческой безопасности, научных, а также исследовательских работ, судоходства, газовой промышленности, охраны правопорядка, пожаротушения и охоты. Тепловизоры Flir характеризуются хорошим разрешением и детализацией, позволяют выполнять широкий спектр задач.







Под брендом Fluke представлены тепловизоры трех серий: производительной, профессиональной и экспертной. Приборы обеспечивают хорошее качество и предлагаются по приемлемой стоимости. Хорошая детализация и четкость изображения. Все модели

тепловизоров Fluke комплектуются съемной картой SD и отличаются простым пользовательским интерфейсом. 






Известный производитель Testo предлагает пользователям тепловизоры практически для всех сфер использования. Тепловизоры Testo удобные и простые в эксплуатации.












Pulsar — крупный изготовитель оптической техники. Тепловизоры для охоты Pulsar являются оптимальными для обеспечения охранной деятельности, а также оперативно-розыскных мероприятий. Отличные приборы для ночной охоты, а также в условиях плохой видимости.








Отечественный производитель

тепловизионных прицелов Fortuna поставляет приборы, отлично подходящие для ночной охоты, отличающиеся высоким разрешением и при этом самой низкой ценой. Ассортимент включает самые разные модели для решения любых задач.












Тепловизоры Guide — практичные приборы по доступной цене с хорошими функциональными возможностями. Отличаются удобством в использовании.








Производителем Dali изготавливаются приборы для энергетики, строительства и металлургии. Тепловизоры оборудованы матрицами высокого разрешения и представляют собой оптимальное соотношение цены и качества.


Как работает тепловизор?

Увидеть места локального нагрева и следовательно слабые места нашего окружения было всегда увлекательным процессом в современном тепловидении. Инфракрасные камеры претерпели существенные изменения в плане улучшения соотношения цена/производительность не в последнюю очередь благодаря всё более эффективным способам изготовления инфраскрасно-оптических датчиков изображения. Техника стала более мелкой, а устройства более прочными и неприхотливыми к расходу электроэнергии. Как же работают современные инфракрасные камеры?

Принцип действия инфракрасной камеры


Тепловизоры работают как обычные цифровые камеры: Они обладают полем зрения, так называемым Field of View (FOV), которое может составлять в качестве телеобъектива 6°, стандартной оптики 23°, а в качестве широкоугольного объектива 48°. Чем дальше находишься от объекта измерения, тем больше охватываемая область изображения и следовательно размер кадра, который регистрирует отдельный пиксель. Плюсом в этом является то, что яркость свечения при достаточно большой площади не зависит от удаления. Благодаря этому расстояние до объекта измерения в значительной степени не влияет на процессы измерения температуры. [1]

Тепловое излучение в среднем инфракрасном диапазоне может фокусироваться только за счёт оптики из германия, сплавов германия, цинковых солей или с помощью зеркал с поверхностным покрытием. Такая улучшенная оптика по сравнению с обычными, изготавливаемыми большими партиями объективами в видимой спектральной области всё еще является значительным фактором расходов при изготовлении тепловизоров. Они выполнены в виде сферического 3-линзового объектива или асферического 2-линзового объектива и должны для термометрических правильных измерений калиброваться именно на камерах со сменными объективами в отношении их воздействия на каждый отдельный пиксель.

Основной элемент любого тепловизора: матрица в фокальной области

Основным элементом любого тепловизора, как правило, является матрица в фокальной области (FPA). Она представляет собой встроенный датчик изображения размером от 20 000 до 1 миллиона пикселей.

Каждый пиксель сам является микроболометром размером от 17 x 17 до 35 x 35 мкм². Подобные тепловые приёмники толщиной 150 нанометров нагреваются посредством теплового излучения в течение 10 мс примерно на одну пятую разности между температурой объекта и собственной температурой. Подобного рода высокая чувствительность достигается за счёт очень низкой теплоёмкости в сочетании с превосходной изоляцией инфракрасной камеры относительно свободного окружения. Коэффициент поглощения частично прозрачной площади приёмника увеличивается посредством взаимодействия пропущенной и затем отражённой на поверхности кремниевого кристалла световой волны с последующей световой волной. [2]

Для использования данного эффекта самоинтерференции поверхность болометра, состоящая из оксида ванадия или аморфного кремния, должна посредством специальных технологий травления располагаться на удалении ок. 2 мкм от схемы считывания. Относящая к поверхности и ширине полосы пропускания удельная обнаружительная способность описываемой здесь матрицы в фокальной области достигает значений около 109 см Hz1/2 / W. Этим самым она на порядок превосходит другие тепловые датчики, используемые, напр., в пирометрах. За счёт собственной температуры болометра снова изменяется его сопротивление, которое преобразуется в электрический сигнал напряжения. Быстрые 14-битовые аналого-цифровые преобразователи оцифровывают предварительно усиленный и сериализованный видеосигнал. Система цифровой обработки сигнала рассчитывает для каждого отдельного пикселя значение температуры и генерирует в реальном времени знакомые псевдоцветные изображения или тепловые диаграммы.

Тепловизорам требуется достаточно дорогое калибрование, при котором каждому пикселю для различных температур микросхемы или чёрного излучателя требуется присвоить ряд величин чувствительности. Для повышения точности измерения матрицы в фокальной области болометра термостатируются при определённых температурах с большой точностью регулирования.

Передача и анализ тепловых диаграмм

Благодаря разработке всё более производительных, компактных и одновременно недорогих ноутбуков, ультра-мобильных ПК, нетбуков и планшетных ПК в настоящее время имеется возможность использования их

  • больших дисплеев для представления тепловых диаграмм,
  • оптимизированных литий-ионных аккумуляторов для электропитания,
  • вычислительной мощности для гибкого высококачественного представления сигнала в реальном времени,
  • ёмкости памяти для практически неограниченной по времени видеозаписи тепловых диаграмм, а также
  • интерфейсов, напр., Ethernet, Bluetooth, WLAN и ПО для интеграции термографической системы в среду пользователя.

Стандартный и доступный интерфейс USB 2.0 позволяет при этом передавать данные на скорости

  • 30 Гц с разрешением 320 x 240 пикселей и
  • 120 Гц для форматов изображения 20 000 пикселей.

Введённая в 2009 году технология USB 3.0 подходит даже для разрешения тепловых диаграмм стандарта XGA до 100 Гц. За счёт применения принципа веб-камер в области термографии появились совершенно новые свойства продукции с существенно улучшенным соотношением цена/производительность. При этом тепловизор в реальном времени подключается к ПК на базе ОС Windows© через интерфейс со скоростью передачи данных 480 Мбод, который одновременно обеспечивает и электропитание.

Аппаратное обеспечение тепловизоров

Стандарт USB служил раньше лишь в качестве средства связи офисной техники. По сравнению с шиной FireWire весьма широкое распространение данного стандарта интерфейса инициировало многочисленные разработки, которые значительно повысили степень промышленной пригодности этого интерфейса и следовательно возможность использования оконечных устройств со стандартом USB 2.0, и прежде всего инфракрасных USB-камер. К ним относятся:

  • кабель, способный к эксплуатации в качестве энергоцепи и выдерживающий нагрузку до 200 °C и длиной до 10 м [3];
  • кабельные удлинители до 100 м CAT5E (Ethernet) с усилителями сигнала;
  • оптоволоконные USB-модемы для длины проводов до 10 км.

Благодаря высокой ширине пропускания сигнала USB-шины, можно, напр., к ноутбуку подключать пять 120-гигагерцовых инфракрасных камер с помощью стандартного хаба через 100-метровый провод Ethernet.

Влагонепроницаемые, устойчивые к вибрациям и ударам тепловизоры серии optris PI соответствуют классу защиты IP 67 и поэтому пригодны для надёжного применения на испытательных стендах. Размер 45 x 45 x 62 мм³ и масса 200 г существенно снижают при этом затраты на установку корпуса охлаждения и воздуходувных насадок.

Обязательно: Калибрование смещения

По причине термического смещения болометров и их обработки сигналов на микросхеме всем выполняющим измерения инфракрасным камерам требуется с интервалом в несколько минут корректировка смещения. С этой целью зачернённая металлическая деталь с помощью электропривода перемещается перед датчиком изображения. Благодаря этому каждый элемент изображения настраивается на одинаковую, известную температуру. Конечно, в ходе выполнения такого калибрования смещения тепловизоры не работают. Чтобы как-то снизить негативное действие подобного процесса, активацию корректировки смещения в определённое время можно настроить посредством установки внешнего управляющего контакта.

К тому же камеры разработаны так, что самокалибровка выполняется максимально быстро: Установка относительно быстрых исполнительных элементов позволяет выполнять самонастройку в течение 250 мс. Это можно сравнить с длительностью смыкания век и поэтому приемлемо для многих процессов измерения. На конвейерах, где необходимо обнаруживать неожиданные места перегрева, часто могут использоваться созданные в реальном масштабе времени «хорошие» контрольные изображения в рамках динамичного измерения разности изображений. За счёт этого возможен длительный режим работы без задействования механического элемента.

Именно при использовании камеры технологии лазерной обработки сигналов CO2 с длиной волны 10,6 мкм хорошо себя зарекомендовала возможность закрывания оптического канала за счёт внешнего управления при одновременно независимой сигнализации оптомеханического защищённого режима работы камеры. Благодаря хорошей блокировке фильтров измерения температуры могут проводиться «по месту» для всех других обрабатывающих лазеров, работающих в диапазоне от 800 нм до 2,6 мкм. 

Области применения тепловизоров


Основными областями применения описываемых здесь инфракрасных камер optris PI являются:

  • Анализ динамичных тепловых процессов при разработке продукции и производственных операций
  • Стационарное использование для непрерывного контроля и регулирования термических процессов
  • Использование в отдельных случаях в качестве портативного измерительного прибора при выполнении ремонтных работ и для определения мест утечки тепла
  • Термография в режиме полета для трудно просматриваемых с земли поверхностей

Возможность 120-гигерцовой записи видеосигнала имеет ряд преимуществ и для области исследований и разработок. Благодаря этому, термические процессы, которые только на короткое время попадают в поле зрения камеры, позднее удобно анализируются в режиме замедленного воспроизведения. Таким способом можно дополнительно создавать отдельные изображения из подобного видеоряда с полным геометрическим и термическим разрешением. 

Помимо этого, сменная оптика, включая насадку для микроскопа, позволяет адаптировать устройство к различным задачам измерений: Если объективы с полем зрения 6° используются скорее для наблюдения за деталями с большого расстояния, то с помощью насадки для микроскопа можно измерять объекты размером 4 x 3 мм² с геометрическим разрешением 25 x 25 мкм².

При стационарной установке тепловизоров их оптически изолированный интерфейс процесса имеет преимущество в том, что полученная на основании тепловой диаграммы температурная информация передаётся дальше в виде напряжения сигнала. Кроме того, относящиеся к поверхности коэффициенты излучения или измеренные бесконтактным или контактным способом значения контрольной температуры могут передаваться в систему камер через вход напряжения. Для документации по контролю и обеспечению качества продукции другой цифровой вход может активировать режим моментальной съёмки или режим видеоряда. Подобные, касающиеся отдельных изделий изображения, могут автоматически сохранятся на центральных серверах.

Далее подробнее описываются два примера применения тепловизоров:

Оптимизация технологических процессов в полимерной промышленности

Процесс изготовления пластмасс, напр., полиэтиленовых бутылок, требует определённого нагрева так называемой преформы, чтобы при формовании выдувом бутылки гарантировать однородную толщину материала. Технологическая линия в тестовых рабочих режимах обрабатывает заготовки толщиной только лишь 20 мм при полной рабочей скорости около одного метра к секунду. Поскольку время прохода испытуемого образца может меняться, необходима запись видеоряда с частотой 120 Гц, чтобы измерить температурный профиль преформы. При этом камера располагается так, что движение материала она записывает под косым углом — подобно последнему вагону движущегося поезда. В результате этого получают важный для настройки параметров нагрева температурный профиль на основании инфракрасного видеоряда.

 Применение однострочной камеры в установках отверждения стекла 

После нарезки окончательной формы конструкционного стекла, часто требуется его поверхностная закалка. Это выполняется в установках отверждения стекла, в которых нарезанное стекло нагревается в печи до температуры 600 °C. После нагрева материал с помощью движущихся валков подаётся из печи на участок воздушного охлаждения, в котором происходит быстрое и равномерно охлаждение поверхности. Вследствие этого образуется важная для безопасного стекла мелкокристаллическая закалённая структура. Данная структура и следовательно прочность стекла зависит от максимально равномерного нагрева всей поверхности изделия.

Поскольку корпус печи и участок воздушного охлаждения располагаются рядом, контроль перемещаемой из печи поверхности стекла возможен только через небольшую щель. На тепловой диаграмме материал появляется только в нескольких строках. Теперь программное обеспечение позволяет получить специальное изображение поверхности стекла, создаваемое из строк или групп строк. Камера измеряет щель по диагонали так, что при оптике с полем зрения 48° создаётся поле зрения 60°. Так как стекло в зависимости от покрытия поверхности может иметь различные коэффициенты излучения, инфракрасный термометр измеряет на нижней, непокрытой стороне стекла точную температуру поверхности при оптимальной для поверхности стекла длине волны 5 мкм.

Воздушная термография с лёгкими камерами

Наряду со стандартными концепциями интерфейсов уже стало возможным изготавливать инфракрасные камеры легкой конструкции, которые в комбинации с мини-ПК, напр., optris PI NetBox, можно без проблем устанавливать на летательные аппараты с дистанционным управления (напр., квадрокоптеры). Таким способом можно создавать тепловые диаграммы в воздухе, которые используются в особенности для контроля обширных объектов, напр., фотогальванических энергетических установок.

Входящее в комплект ПО по термографии гарантирует гибкость

Поскольку инфракрасные USB-камеры, начиная с версии Windows XP используют уже инсталлированные стандартные драйверы USB Video Class или HID, никакой установки драйверов не требуется. Относящаяся к отдельным пикселям корректировка видеоданных в реальном времени и расчёт температуры выполняется в ПК. Изумительное для 20 000 пикселей датчика хорошее качество изображения достигается за счёт дорогостоящего алгоритма рендеринга на базе ПО, который рассчитывает температурные поля в формате VGA. Прикладное ПО отличается высокой гибкостью и мобильностью. Помимо стандартных функций ПО по термографии optris PIX Connect имеет следующие свойства:

  • Большое число данных и функции экспорта тепловых диаграмм для поддержки отчётов и автономных анализов
  • Смешанные масштабируемые цветовые шкалы
  • Горизонтальные или вертикальные представления линий
  • Любое количество полей зрения с отдельными опциями тревоги

Основанное на контрольных изображениях представление разности видеоданных

Кроме этого, ПО предлагает режим макета, который сохраняет и восстанавливает различные режимы представления данных. Видеоредактор позволяет обрабатывать радиометрические файлы с расширением AVI. Подобные файлы можно анализировать с помощью параллельно используемого несколько раз ПО и в автономной режиме. К режимам видеозаписи относятся прерывистые режимы работы, которые позволяют записывать медленные термические процессы и затем быстро их просматривать. Передача данных в другие программы в реальном режиме времени осуществляется через подробно задокументированные библиотеки DLL, которые являются составной частью комплекта разработки ПО – Software Development Kits. С помощью интерфейса DLL можно управлять любыми другими функциями камеры. В качестве варианта ПО может обмениваться данными с последовательным Com-портом, и таким способом, напр., напрямую задействовать интерфейс RS422. 

Литература

  1. VDI/VDE Richtlinie, Technische Temperaturmessungen — Spezifikation von Strahlungsthermometern, Juni 2001, VDI 3511 Blatt 4.1
  2. Trouilleau, C. et al.: High-performance uncooled amorphous silicon TEC less XGA IRFPA with 17 μm pixel-pitch; “Infrared technologies and applications XXXV”, Proc. SPIE 7298, 2009
  3. Schmidgall, T.; Glänzend gelöst – Fehlerdetektion an spiegelnden Oberflächen mit USB 2.0 — Industriekameras, A&D Kompendium 2007/2008, S. 219
  4. Icron Technology Corp.; Options for Extending USB, White Paper, Burnaby; Canada, 2009

   Тепловизор – прибор, предназначенный для определения теплового излучения на исследуемой поверхности. Метод исследования – бесконтактный, он обеспечивает бесперебойную работу при изучении движущихся объектов. Устройство для наблюдения за распределением температуры исследуемой поверхности.
   Принцип действия тепловизора основан на преобразовании энергии инфракрасного излучения в электрический сигнал, который усиливается и воспроизводится на экране индикатора. Распределение температуры отображается на дисплее тепловизора как цветовое поле, где определенной температуре соответствует определенный цвет. Как правило, на дисплее отображается диапазон температуры видимой в объектив поверхности.

   О разновидностях тепловизоров

   В зависимости от функций, которые выполняет инструмент, различают несколько его видов:

   Измерительные – выдают радиометрическое изображение, в результате чего можно определить температурные показатели всех объектов в зоне наблюдения. Данный вид аппаратуры применяется в медицине, строительстве, промышленности, при тестировании электрооборудования, механических коммуникаций.
   Наблюдательные – обеспечивают только визуализацию объектов, находят применение в военном деле, охранных и силовых структурах, в спасательных операциях и т. п.
   Пирометры визуальные – разновидность инструментов для наблюдения, которые способны выявить зоны с аномальным температурным режимом.

   Несколько лет назад применение тепловизоров было доступно только военным ведомствам. Сегодня их используют во многих областях производственной деятельности, так как это позволяет решить многие технические вопросы. Их производство развернулось не только в виде отдельно взятых приборов, но и как составная часть гражданских биноклей, прицелов для охотничьего оружия, других оптических механизмов.

   Измерительный диапазон – один из факторов, который определяет их температурные возможности и условно разделяет их на 3 типа:

   Строительные: реагируют на температуру до +3500, применяются для аудита строительных сооружений, определяют качество изоляции, находят места утечек тепла из зданий.
   Промышленные: температурные границы – более +3500, применяются для диагностики электросетей, промышленных систем.
   Высокотемпературные: определяют тепловые параметры более +10000, диагностируют технологические процессы с высоким уровнем нагрева.

   Их использование получило широкое распространение в современной жизни как в производственных целях, так и в гражданских нуждах.

   Сферы применения

   Область применения связана со способностью преобразовывать тепловое излучение в спектр, который воспринимает человеческий глаз, обнаруживать самые незначительные объекты, излучающие электромагнитные волны. Если определить интенсивность излучения, то можно рассчитать температуру исследуемого объекта и предположить, что это. При помощи аппарата определяется разница температур, при отсутствии контакта с объектами, они не реагируют на помехи, не могут быть обнаружены системами слежения, имеют большую дальность действия: от 100 м до 3 км. Эти принципы работы позволяют применять их в самых различных областях.

   В военной технике

   Новая современная техника поступает сегодня на вооружение, имея в своем арсенале встроенные тепловизорные камеры. Их использование позволяет вести боевые действия в условиях плохой видимости, обнаруживать противника и технику. Помимо этого, устройства устанавливаются на беспилотных самолетах и на технике, управляемой дистанционно.

   Возможность «видеть» объекты в ночное время – основной показатель, имеющий значение приборов в военной сфере. Принцип успешной работы аппаратуры заключается в четком обнаружении теплового излучения. Для армии производятся специальные аппараты в виде биноклей, прицелов для оружия, ими оснащаются системы наведения. Они оснащены мощными оптическими механизмами, что увеличивает возможности военных тепловизоров многократно.

   В морских приборах

   Морской или речной порт является сложным транспортным узлом, и его безопасность может обеспечить только самая совершенная охранная аппаратура. Морские тепловизоры предназначены для обеспечения безопасности водных и прибрежных объектов: портов, причалов, складов, речных вокзалов.

   Охота

   Тепловизор для охоты – хорошее подспорье для тех, кто увлечен выслеживанием добычи. Использование прибора позволяет отслеживать самого осторожного зверя в любое время суток независимо от погоды и видимости.

   Обследование зданий

   С помощью тепловизорных датчиков есть возможность обследовать любое сооружение, чтобы определить место утечки тепла. Результаты исследования станут весомым аргументом для того чтобы доказать плохое качество теплоизоляции стен. Для коммунальщиков применение тепловизора для обследования зданий – хорошее средство правильно определить проблемные зоны и направить силы на утепление конкретных мест.

   Медицина

      

   Использование тепловизора в медицине производилось еще во времена СССР. Приборы позволяют распознать характер заболевания, а также увидеть инфицированного человека среди здоровых по температуре тела, характерной для той или иной болезни.

   Обследование с помощью специальной аппаратуры, реагирующей на электромагнитные волны, помогает обнаружить воспалительный процесс с точностью до микрона и найти область патологии. Использование аппарата позволит определить, болен пациент или здоров, увидеть источник заболевания, поставить диагноз.

   Чрезвычайные ситуации и АСР

  

   Пожарные, вооруженные прибором, можгут увидеть наиболее безопасный путь выхода из огня, минуя самые горячие участки. Спасатели, вооруженные аппаратом, в самых трудных ситуациях имеют возможность найти человека в зоне плохой видимости.

   Помимо перечисленных сфер, где применение измерительной тепловой техники – необходимое условие успешной деятельности, данные приборы используются и в других областях промышленности и в повседневной жизни людей. Поэтому сегодня производится много их разновидностей, и выбор тепловизора зависит только от цели его использования.

   Технические характеристики устройства свидетельствуют о том, можно ли использовать его как универсальный или его специализация более узкая. Границы температур, на которые ориентирован прибор – главный критерий при выборе. Чтобы не допустить ошибку при покупке, необходимо учитывать, что температурный диапазон устройства должен быть больше температуры исследуемого объекта как минимум на 25%.

   О классификации тепловизоров

   Существует масса критериев классификации тепловизорной аппаратуры. По типу исполнения они бывают стационарные и переносные. Стационарный тепловизор предназначается для наблюдения за одной зоной, поэтому устанавливается фиксировано на определенном месте. Например, на производстве может быть установлена такая модель для слежения за температурой объектов на конвейере.

   Портативные тепловизоры используются в строительстве, энергетике, некоторых отраслях промышленности. Они устроены таким образом, что их можно перемещать к различным объектам наблюдения. Их вес колеблется от 300 г до 2 кг. Разные модели оснащаются необходимыми системами: экраном, оптикой, встроенными фотоаппаратами, подсветкой и прочей гарнитурой. Переносные приборы имеют автономный аккумулятор, который обеспечивает питание техники до 8 часов.

   Одной из важных функций является то, что все зафиксированные данные сохраняются в приборе, и затем их можно перенести на компьютер для дальнейшей обработки. Файлы сохраняются в виде фотографий и видео.

Особенности использования тепловизоров при ликвидации пожаров и проведении аварийно спасательных работ

Возможности тепловизора

Сравнение прибора ночного видения с тепловизором

Тепловизор позволяет увидеть людей через дым

Поиск человека по тепловому следу оставленному по месту его касания на мебели, полу (в зависимости от условий следы сохраняются около 5 минут)

Использование тепловизора при поиске горючих, ядовитых жидкостей (сжиженных газов) в емкостях

Тепловизор не способен видеть через стекло автомобиля

Тепловизор способен видеть скрытую электропроводку под напряжением и различать неравномерность распределения температуры в электропроводах

Возможности тепловизора в различных условиях

Стекло

ИК излучение не проходит через стекло, однако нагретое стекло будет отображаться, как более светлая область.

Стекло-Зеркало

ИК излучение отражается через стекло

Вода

ИК излучение не проходит через воду, в некоторых случаях проникает через туман или изморось.

Пар- Распыленная вода

ИК излучение может проникать или не проникать через пар, в зависимости от его плотности. Например, туман не является преградой для тепловизора.

Выявление «горячих пятен»

Некоторые модели тепловизоров имеют функцию TT-датчика. ТТ функция окрашивает наиболее нагретые участки цветом. Чем горячее участок, тем темнее тона (на рисунке — синим цветом).

Пример использования тепловизора с ТТ-датчиком на пожаре

Использование тепловизора на пожаре

Тепловизор на пожаре

Температура объекта через тепловизор

Температура пламени на пожаре

Вид на огонь через тепловизор

Видео с пожаров при работе с тепловизором

Материал подготовлен совместно с кафедрой ПС, ФП и ГДЗС (ИПСА ГПС МЧС России)

Источник:

https://fireman. club/statyi-polzovateley/primenenie-i-ispolzovanie-teplovizora/

оснащение тепловизор

Тепловизор. Виды и работа. Применение и как выбрать. Устройство

Тепловизор представляет специальное устройство, которое используется для определения теплового излучения в исследуемом пространстве. В большинстве случаев это устройство имеет дисплей, на котором высвечивается цветная картинка. Каждый цвет здесь означает конкретный уровень температуры. Благодаря визуализации картинки теплового излучения открываются многочисленные возможности использования подобного прибора, к примеру, в военной и охранной сфере, в измерении и контроле технологического процесса.

Работа данного устройства строится на том, что от каждого объекта исходят электромагнитные волны в различном диапазоне частот. Это касается и инфракрасного спектра, то есть «теплового излучения». Но с единственной оговоркой, что интенсивность указанного излучения находится в прямой зависимости от текущей температуры объекта. При этом она практически не зависит от степени освещенности поверхности в видимом диапазоне. В результате тепловизионный прибор помогает получить дополнительную информацию, которую невозможно получить обычным зрением или приборами, работающими в видимом диапазоне частот.

Виды
Тепловизор
 по разрешающей способности инфракрасного датчика матрицы может классифицироваться на следующие классы:
  • Базовый – порядка 160×120.
  • Профессиональный – до разрешения в 640×480.
  • Экспертный – разрешение более 640×480.

Модели тепловизионных приборов могут иметь неохлаждаемый или охлаждаемый сенсор. В охлаждаемых вариантах датчик позволяет «видеть» на дальних расстояниях с высочайшей чувствительностью. Однако подобные устройства чаще всего являются стационарными, так как система охлаждения увеличивает массу и габариты устройства. Подобные приборы часто применяются в лабораториях или в качестве перевозимых устройств на автотранспорте. Неохлаждаемые приборы применяются практически повсеместно.

В зависимости от измерительного диапазона тепловизионные приборы делят на следующие виды:
  • Строительные приборы, которые работают до температуры в 350 градусов по Цельсию. Их применяют для энергетического аудита строений, оценки теплоизоляционных свойств стен, протечек трубопроводов и тому подобное.
  • Промышленные приборы, которые работают свыше 350 градусов по Цельсию. Их используют для диагностических работ механических и электрических устройств, проверки электрического оборудования, машиностроительных систем и тому подобное.
  • Высокотемпературные приборы, которые работают свыше 1000 градусов по Цельсию. Их используют в специфических случаях: для осуществления контроля техпроцессов, выполняемых при высоких температурах, диагностических исследованиях промышленных и иных устройств с узлами, подвергающихся высокой степени нагревания.
Также тепловизионные приборы бывают следующих видов:
  • Наблюдательные приборы, которые преобразуют инфракрасное излучение в видимое изображение в соответствии со специальной цветовой шкалой.

  • Измерительные приборы, которые определяют температуру объекта с помощью соотношения определенной температуры цифровому пикселю. В результате появляется картинка распределения температур.

  • Стационарные устройства часто используются на промышленных предприятиях, где необходимо контролирование технологических процессов. Подобные прибора часто имеют азотное охлаждение для обеспечения требуемых условий функционирования приемной аппаратуры.

  • Переносные приборы выполняются на базе неохлаждаемых кремниевых микроболометров. Такие агрегаты удобны в применении, и можно легко переносить, и применять в разных труднодоступных местах.
 
Устройство
Переносной тепловизор
 имеет следующие основные элементы:

  • Объектив. Для его изготовления применяются редкие материалы, к примеру, германий. Использование стекла недопустимо, так как через него не проходит инфракрасное излучение. Объектив фиксирует инфракрасное излучение. Для оптимизации пропуска света используются просветляющие тонкопленочные покрытия.
  • Матрица, то есть приемник излучения. На данный элемент приходится большая часть цены устройства.
  • Крышка объектива – предохраняет объектив от повреждения.
  • Дисплей, на нем отображаются данные, высвечивается изображение. В большинстве случаев применяется жидкокристаллический экран. Кроме тепловой информации на нем часто высвечиваются вспомогательные данные в виде заряда аккумулятора, времени, шкалы температур и иной важной информации.
  • Ручка с ремнем.
  • Элементы управления. При помощи них осуществляется настройка электронной системы.
  • Электронная система, включающая систему обработки информации. Предназначена для модификации инфракрасного излучения в видимое изображение.
  • Устройство хранения информации и ряд иных дополнительных элементов. Большинство современных приборов имеют карты памяти, которые можно вытащить, чтобы передать информацию на персональный компьютер. Предустановленные программы позволяют провести анализ картинки, в том числе выполнить их обработку для последующей печати или сохранения.
Принцип действия
  • Оптический элемент, куда входят линзы из редкого материала, фиксирует инфракрасное излучение.
  • Далее тепловое излучение направляется на матрицу, которая имеет высокую чувствительность к инфракрасному излучению.
  • Затем сложные микросхемы получают данные с матрицы, генерируя видеосигнал. В нем каждой температуре объекта соответствует определенный цвет картинки.
  • На экране дополнительно высвечивается цветовая шкала соответствия.

  • Тепловизор к тому же может быть оснащен устройством памяти, чтобы можно было записать поток видео тепловой картинки и впоследствии сохранить его на ПК. В комплекте также могут идти микропроцессоры, при помощи которых можно выполнить небольшую аналитику.

В некоторых случаях тепловизор в своем оснащении имеет видеокамеру, благодаря которой удается получить объединенную картинку в видимом и инфракрасном спектре. Благодаря специальному программному обеспечению можно произвести их наложение, в том числе выполнить их обработку.

Применение

Сегодня тепловизор широко применяется в разных сферах деятельности человека. Вызвано это тем, что указанное оборудование способно фиксировать минимальные температурные изменения, которые не может заметить глаз человека. Для работы этого прибора необходимо только инфракрасное излучение. К тому же его можно использовать на расстоянии. При существенной дальности действия, прибор невозможно выявить средствами слежения.

Ввиду указанных свойств данный прибор находит широчайшее применение в:
  • Диагностике.
  • Медицине.
  • Военной сфере.
  • Научных исследованиях.
  • Промышленности.
  • Строительстве.
  • Системах автоматики и так далее.

Так в военной разведке или охране тепловизор способен заметить технику в полной темноте на расстоянии до 3 километров. Человека же он может обнаружить на расстоянии порядка 300 метров. Медицинские устройства применяются для выявления различных заболеваний с помощью изучения параметров инфракрасного излучения. Научные тепловизионные приборы помогают проводить эксперименты и лабораторные исследования.

В промышленности устройства помогают контролировать нормальное течение технологических процессов и предотвращать внештатные ситуации. В строительстве тепловизионные приборы позволяют выявить дефекты в строительной конструкции. Это касается усталостного старения металла, появляющегося в зонах деформации. Именно там начинает выделяться большее количество тепла. Благодаря этому можно не разбирать конструкцию, чтобы отыскать дефекты и предотвратить их возможное разрушение.

Как выбрать 
Тепловизор
 нужно правильно выбрать, чтобы при помощи него можно было решать поставленные задачи:
  • При необходимости использования прибора в промышленных местах, где возможно его повреждение, следует уделить внимание его защите. Он должен иметь металлический корпус и защиту от внешнего воздействия, к примеру, влажности, пыли и так далее.
  • Модельный ряд устройств весьма широк. Каждый производитель зачатую предлагает целую линейку приборов, который отличаются характеристиками и ценовым диапазоном. Если Вы хотите использовать прибор для повседневного использования в разных местах, то присмотритесь к переносному варианту. Для использования в промышленности для проведения высокоточных измерений одного технологического процесса нужен стационарный вариант.
  • Прибор должен быть удобен в работе. Поэтому оцените расположение кнопок, в том числе элементов быстрого доступа. Устройство должно обеспечивать удобное и легкое его использование. Для постоянной работы с изображениями лучше всего остановиться на модели с сенсорным экраном.
  • Важнейшим параметром устройства считается термочувствительность. Высокая чувствительность прибора позволит различить почти все предметы, имеющие практически одну температуру. Вызвано это тем, что объекты из разных материалов даже при одинаковой температуре излучают тепло с некоторыми различиями.
  • Диапазон измерений температур важен для того, где Вы собираетесь использовать прибор. Необходимо точно знать, что Вы будете исследовать. К примеру, для исследования работы электрического двигателя вполне хватит устройства с диапазоном до 500 градусов по Цельсию.
Похожие темы:

Вакансии компании Тепловизор

ЗАО НПО «Тепловизор» было образованно в декабре 1996г. На момент образования ЗАО «НПО «Тепловизор» имел в своем составе три специалиста. В настоящее время общая численность работающих в организации, превышает 100 человек.
Основу коллектива составляют высококвалифицированные специалисты в области электроники, теплотехники, гидродинамики, программирования и др. Этот состав специалистов позволил НПО «Тепловизор» разработать, испытать, сертифицировать и организовать серийное производство широкой гаммы высококлассных теплосчетчиков и расходомеров типов ВИС.Т и ВИС.МИР, а также обеспечить постоянную их модернизацию и улучшение их потребительских свойств.
Используя разносторонние профессиональные возможности своего коллектива НПО «Тепловизор» на высоком уровне выполняет работы по проектированию узлов учета, по их установке и сервисному обслуживанию, а также проводит работы по аудиту систем теплоснабжении зданий, ИТП, ЦТП и РТС.

На сервисном обслуживании специалистов нашей организации находится более 500 узлов учета тепловой энергии выполненных с использованием теплосчетчиков, как своего производства, так и остальных крупных поставщиков приборов расходометрии (ASWEGA, Взлет, ТБН и др.), при этом более 50 особо ответственных узлов на выводах всех РТС ГУП «МОСТЕПЛОЭНЕРГО».

Оперативность, надежность и качество выполняемых работ НПО «Тепловизор» позволили ей стать одним основных партнеров ГУП «МОСТЕПЛОЭНЕРГО» в вопросах теплоучета.
Сочетание высоких технических и метрологических характеристик, не уступающих лучшим образцам западных изготовителей , минимальные затраты на установку, низкая стоимость и высокая эксплуатационная надежность заслуженно выводят теплосчетчики и расходомеры типов ВИС.Т и ВИС.МИР на ведущие позиции на рынке теплосчетчиков и расходомеров. На основании этого теплосчетчики и расходомеры типов ВИС.Т и ВИС.МИР рекомендованы Московским правительством к установке на объектах города.

Установили тепловизоры на проходных предприятия

После начала эпидемии COVID-19 директор крупного предприятия решил установить тепловизоры, чтобы отслеживать сотрудников с повышенной температурой и не допустить распространения заболевания.

Устройства нужно было разместить на всех проходных, через которые утром и вечером проходит до 2000 человек. Поэтому процесс измерения должен проходить беспрерывно, чтобы не создавать очереди.

Мы выполнили все работы менее чем за 10 рабочих дней.

Решение:

Для выполнения работ было закуплено следующее оборудование:

  • Тепловизор гибридный Dahua DH-TPC-BF5421-T (5 штук)
  • Эталонное чёрное тело Dahua JQ-D70Z (5 штук)
  • IP-видеорегистратор Dahua 16-канальный DHI-NVR5216-8P-I (4 штук)
  • Адаптер RQW026-00 (5 штук)
  • Штатив VCT-999 (5 штук)
  • Дополнительно оборудование: блоки питания, оповещатели, тросы, кабель-каналы и прочие материалы необходимые для монтажа и звуковой сигнализации.

Установили тепловизоры на проходных предприятия

Поставить и настроить систему тепловизоров с возможностью проверки большого потока сотрудников

Перед началом работ вместе с техническими специалистами заказчика мы провели предпроектной обследование, чтобы выявить точки для установки устройств.

Для установки мы выбрали программно-аппаратный комплекс Dahua:

  • Камера-тепловизор
  • Черное тело для минимизации погрешностей измерения
  • Видеорегистратор
  • Штатив

Мы смонтировали устройства на стены и потолок, провели отдельные кабели. Также мы настроили работу с «черным телом», которое нужно для калибровки тепловизора, провели юстировку.

Отметим, что данный комплекс можно использовать без монтажа на поверхности, для чего нужен ещё один штатив и переходник. В этом случае комплекс становится мобильным.

Дополнительно мы оснастили заказчика системой звукового оповещения. Дело в том, что комплекс издает звуковой сигнал, при обнаружении повышенной температуры у человека. Но охранники сидят в отдельной комнате и могли пропустить оповещение. Поэтому мы провели дополнительную систему звуковой сигнализации.

Отдельной сложностью, с которой мы эффективно справились, было правильное расположение устройств, чтобы минимизировать погрешности измерения. Например, около одной проходной остановился автобус, а в это время под тепловизором проходил сотрудник. В итоге система показала, что у человека была температура выше 50 градусов.

После окончания работ мы провели обучение сотрудников, чтобы они могли самостоятельно обслуживать комплекс и настраивать его работу, если тепловизоры понадобится переместить в другое место.

Как работают тепловизоры?

Тепловизор — это бесконтактное устройство, которое улавливает инфракрасную энергию (тепло) и преобразует ее в визуальное изображение. Давайте погрузимся в науку о тепловизионных камерах и невидимом мире тепла, который они позволяют нам видеть.


Как работают тепловизионные камеры?

Обнаружение инфракрасных волн, невидимого света

Первое, что нужно знать о тепловизионных камерах, — они работают не так, как обычные камеры.Обычные камеры дневного света и человеческий глаз работают по одному и тому же основному принципу: энергия видимого света попадает во что-то, отражается от него, детектор принимает отраженный свет и затем превращает его в изображение.

Тепловизоры делают снимки от тепла, а не от видимого света. Тепло (также называемое инфракрасной или тепловой энергией) и свет являются частями электромагнитного спектра, но камера, которая может обнаруживать видимый свет, не видит тепловую энергию, и наоборот. Тепловизионные камеры фиксируют инфракрасную энергию и используют данные для создания изображений через цифровые или аналоговые видеовыходы.


Крейг Билс объясняет электромагнитный спектр в Invisible Labs.

Внутри камеры

Тепловизор состоит из объектива, термодатчика, электроники обработки и механического корпуса. Объектив фокусирует инфракрасную энергию на датчике. Датчик может иметь различные конфигурации пикселей от 80 × 60 до 1280 × 1024 пикселей или более.Это разрешение камеры.

Эти разрешения являются низкими по сравнению с устройствами формирования изображений в видимом свете, поскольку тепловые детекторы должны воспринимать энергию, имеющую гораздо большую длину волны, чем видимый свет, что требует, чтобы каждый элемент датчика был значительно больше. В результате тепловизионная камера обычно имеет гораздо более низкое разрешение (меньше пикселей), чем видимые датчики того же механического размера.

  • Важные характеристики, которые следует учитывать при выборе тепловизора, включают разрешение, диапазон, поле зрения, фокус, тепловую чувствительность и спектральный диапазон.Нажмите, чтобы узнать больше.
Какие тепловизионные камеры могут обнаруживать?

Тепло, воспринимаемое инфракрасной камерой, можно очень точно измерить, что позволяет использовать его в самых разных областях. Тепловизор FLIR может обнаруживать крошечные различия в температуре — всего 0,01 ° C — и отображать их в виде оттенков серого или с различными цветовыми палитрами.

То же изображение с разницей тепла, отображаемое в палитрах «железный лук» и «Раскаленный добела».

Все, с чем мы сталкиваемся в повседневной жизни, испускает тепловую энергию — даже лед. Чем горячее что-то, тем больше тепловой энергии оно излучает. Эта излучаемая тепловая энергия называется «тепловой сигнатурой». Когда два объекта рядом друг с другом имеют даже слегка разные тепловые сигнатуры, они довольно четко видны тепловому датчику независимо от условий освещения. Это позволяет тепловизионным камерам видеть в полной темноте или в задымленном помещении.

  • Тепловизоры могут видеть многое, чего не видят наши глаза или обычные камеры, но могут быть заблокированы некоторыми неожиданными материалами. Нажмите, чтобы узнать больше.
Для чего используются тепловизоры?

Часто путают тепловизионную технологию и технологию ночного видения, но каждая из них имеет свои уникальные особенности и сильные стороны.

Возможности использования тепловизионных камер практически безграничны. Первоначально разработанные для наблюдения и военных операций, тепловизионные камеры в настоящее время широко используются для обследования зданий (влажность, изоляция, кровля и т. Д.).), пожаротушение, автономные транспортные средства и автоматическое торможение, проверка температуры кожи, промышленные инспекции, научные исследования и многое другое.

Как бы вы использовали тепловизор? Оставьте комментарий ниже, чтобы сообщить нам об этом!

Как работают тепловизоры

К настоящему времени все знакомы с обычными фотоаппаратами и снимками, которые они могут делать, но как насчет тепловизоров? Эти камеры создают изображения, которые камеры визуального освещения совершенно не могут зафиксировать.

Тепловизионные камеры 101

Тепловизионные камеры создают изображения инфракрасного излучения, также известного как … тепло. Датчики в этих камерах могут создавать составное изображение, которое точно отображает тепло, излучаемое объектом, в результате получается инфракрасное изображение, способное показать вам то, что не может увидеть невооруженный глаз или камера видимого света.

Эта технология обеспечивает бесконечное количество применений, и теперь она широко доступна как для новичков, так и для профессионалов, которые полагаются на тепловизоры в своей работе.

Что такое тепловизионная камера?

Прежде чем углубляться в то, как работает тепловизионная камера, давайте сначала объясним, что это такое.

По определению тепловизионная камера — это тепловизор, который, по сути, является тепловым датчиком, способным обнаруживать крошечные различия в температуре. Устройство собирает инфракрасное излучение от объектов в сцене и создает электронное изображение на основе информации о разнице температур.

Эти камеры бывают разных видов.Некоторые из них представляют собой большие устройства, которые нужно вращать, другие требуют двух рук и удержания, а наиболее часто используемые тепловизоры, с которыми вы столкнетесь сейчас, — это портативные устройства, которые эргономичны и управляются триггером для запуска захвата изображения.

В то время как все тепловизионные камеры имеют инфракрасный датчик для выбора длин волн инфракрасного излучения, многие также имеют линзы визуального света, которые создают изображение, которое накладывается на инфракрасное изображение, обеспечивая больший контекст и детализацию инфракрасного изображения.

Подавляющее большинство тепловизоров имеют экран, который дает мгновенное визуальное представление сделанного изображения, а некоторые могут мгновенно загружать изображения в сеть или отправлять изображение и даже видео в реальном времени на другие устройства.

Как работают тепловизоры

Тепловизионные камеры используют комбинацию датчиков и схем для создания удобного изображения, которое можно четко просматривать на экране.

Для начала объектив тепловизора направляют на объект или область.Объектив камеры фокусирует инфракрасный свет, излучаемый всеми объектами в поле зрения объектива. Затем сфокусированный свет сканируется фазированной решеткой инфракрасных детекторов.

Затем элементы детектора создают подробный и точный температурный образец, известный как термограмма, примерно за одну тридцатую секунды. Информация о температуре собирается из нескольких тысяч точек в поле зрения детектора.

Термограмма, созданная элементами детектора, затем преобразуется в электрические импульсы.Импульсы отправляются на печатную плату со специализированным чипом, который преобразует информацию от элементов детектора в полезные данные для дисплея камеры.

Наконец, блок обработки сигналов отправляет преобразованную инфракрасную информацию на дисплей, создавая изображение различных цветов в зависимости от интенсивности (тепла) инфракрасного излучения.

Области применения тепловизионных камер

Современные версии тепловизионных камер изначально создавались для использования в военных целях, но теперь получили широкое распространение.

Профилактическое обслуживание

Это, пожалуй, самое популярное применение тепловизора, поскольку оно может пригодиться как новичкам, так и профессионалам. Многие устройства и машины имеют тенденцию к перегреву, что приводит к отказу, в том числе схемы и электрические розетки.

Тепловизоры позволяют легко сканировать эти объекты на предмет выявления участков, которые могут быть перегретыми. Это быстро сокращает часы работы наугад и диагностику, и это можно делать регулярно, чтобы выявить проблемы до того, как они станут серьезными.

Это можно применить к объектам в вашем собственном доме или даже к другим объектам, например к двигателю автомобиля. Тепловизионные камеры могут быстро показать вам проблемные места в любом месте от блока двигателя до блока предохранителей, экономя ваше время и деньги в будущем.

Поиск и устранение неисправностей в области отопления и охлаждения

Утечки воздуха в вашем доме и вокруг него могут не только сделать ваш дом менее комфортным, но и стоить вам денег из-за увеличения счетов за электроэнергию.

Тепловизоры позволяют быстро сканировать участки в вашем доме на наличие сквозняков или утечек воздуха, которые приводят к потере отопления и охлаждения в вашем доме.С помощью тепловизора вы можете точно определить участки вокруг дверей и окон, которые не герметизированы должным образом, и использовать тепловизор после ремонта, чтобы убедиться, что герметизация была выполнена правильно. .

Вы даже можете использовать эти устройства, чтобы обнаружить недостающую изоляцию внутри стен, а также определить любые участки на вашей крыше, которые также могут способствовать возникновению проблемы.

Службы быстрого реагирования

Тепловидение может спасти жизни, когда время имеет решающее значение. Fireme n регулярно использует тепловизионное изображение при реагировании на пожары на территории, чтобы найти людей, которые все еще могут находиться внутри, а также определить самые горячие участки пожара.Это может быть особенно полезно, когда обзор затрудняет густой дым.

Эти камеры очень полезны во время катастрофических событий, таких как обрушение зданий. Тепловизионное изображение может проникнуть в обломки и определить местонахождение любых жертв, которые оказались в ловушке под завалами и которые в противном случае могли бы быть пропущены. Полицейские даже использовали тепловизор для захвата скрывающихся подозреваемых.

Здоровье животных

Ветеринары широко используют тепловизоры, особенно когда речь идет о лечении и диагностике крупных животных, таких как коровы и лошади.Тепловизионные камеры могут помочь ветеринарам обнаружить воспаленные и перегретые части тела, что указывает на инфекции, внутреннее кровотечение и целый ряд проблем со здоровьем, на которые трудно указать невооруженным глазом.

Безопасность

Тепловидение может оказаться большим подспорьем, когда дело касается безопасности. Независимо от того, исследуете ли вы шум на заднем дворе, который слышите посреди ночи, или опасаетесь, что ночью во время кемпинга вы можете оказаться в присутствии нежелательных гостей, тепловидение может показать вам, что в противном случае окутано тьмой.

Плесень и утечки влаги

Тепловидение — это не только определение местоположения тепла. Иногда аномалии могут быть вызваны тем, что они вообще не выделяют тепла. Тепловизионные камеры могут выявить плесень, которая может быть за стенами, а также обнаружить утечки воды, которые просачиваются в ваш подвал или из трубы.

Как работает тепловидение | HowStuffWorks

Человеческие глаза — удивительно сложные и замысловатые органы. Они созданы для того, чтобы видеть видимый свет .Этот свет отражается от предметов, делая их видимыми для нас.

Свет, который представляет собой тип излучения , имеет больше вкусов, чем только видимый. Диапазон света охватывает весь электромагнитный спектр , состоящий из видимого и невидимого света, а также рентгеновских лучей, гамма-лучей, радиоволн, микроволн и ультрафиолетового света.

Длина волны (также называемая частотой ) — вот что отличает каждый из этих типов света друг от друга.Например, на одном конце спектра у нас есть гамма-лучи с очень короткими длинами волн. На оборотной стороне спектра у нас есть радиоволны, которые имеют гораздо большую длину волны. Между этими двумя крайностями находится узкая полоса видимого света, и рядом с этой полосой существует инфракрасных длин волн в частотах от 430 ТГц (тетрагерц) до 300 ГГц (гигагерц).

Понимая инфракрасное излучение, мы можем использовать тепловизионные устройства для обнаружения тепловых сигнатур практически любого объекта.Почти вся материя излучает хоть немного тепла, даже очень холодные объекты, такие как лед. Это потому, что если этот объект не находится на абсолютном нуле (минус 459,67 градуса по Фаренгейту или минус 273,15 градуса по Цельсию), его атомы все еще шевелятся и дергаются, натыкаясь и выделяя тепло.

Иногда предметы настолько горячие, что не пропускают видимый свет — подумайте о красных, раскаленных спиралях на электрической плите или углях в костре. При более низкой температуре эти объекты не будут светиться красным, но если вы определенно можете поднести к ним руку, вы почувствуете тепло или инфракрасные лучи, когда они текут наружу к вашей коже.

Однако довольно часто наша кожа не очень полезна для обнаружения инфракрасного излучения. Если вы наполните одну чашку теплой водой, а другую — прохладной и поставите их на стол в другом конце комнаты, вы не поймете, какая из них. Однако тепловизионная камера знает об этом мгновенно.

В такой ситуации люди полагаются на электронные инструменты. По сути, тепловизионные устройства — это помощники нашего зрения, расширяющие наш видимый диапазон, так что мы можем видеть инфракрасный свет в дополнение к видимому свету.Обладая этой расширенной визуальной информацией, мы становимся супергероями электромагнитного спектра.

Но как цифровое устройство может улавливать невидимые тепловые сигналы и создавать изображение, которое имеет смысл для наших глаз? На следующей странице вы увидите, как это стало возможным благодаря развитию цифровой обработки.

Как работает тепловидение | HowStuffWorks

Человеческие глаза — удивительно сложные и замысловатые органы. Они созданы для того, чтобы видеть видимый свет .Этот свет отражается от предметов, делая их видимыми для нас.

Свет, который представляет собой тип излучения , имеет больше вкусов, чем только видимый. Диапазон света охватывает весь электромагнитный спектр , состоящий из видимого и невидимого света, а также рентгеновских лучей, гамма-лучей, радиоволн, микроволн и ультрафиолетового света.

Длина волны (также называемая частотой ) — вот что отличает каждый из этих типов света друг от друга.Например, на одном конце спектра у нас есть гамма-лучи с очень короткими длинами волн. На оборотной стороне спектра у нас есть радиоволны, которые имеют гораздо большую длину волны. Между этими двумя крайностями находится узкая полоса видимого света, и рядом с этой полосой существует инфракрасных длин волн в частотах от 430 ТГц (тетрагерц) до 300 ГГц (гигагерц).

Понимая инфракрасное излучение, мы можем использовать тепловизионные устройства для обнаружения тепловых сигнатур практически любого объекта.Почти вся материя излучает хоть немного тепла, даже очень холодные объекты, такие как лед. Это потому, что если этот объект не находится на абсолютном нуле (минус 459,67 градуса по Фаренгейту или минус 273,15 градуса по Цельсию), его атомы все еще шевелятся и дергаются, натыкаясь и выделяя тепло.

Иногда предметы настолько горячие, что не пропускают видимый свет — подумайте о красных, раскаленных спиралях на электрической плите или углях в костре. При более низкой температуре эти объекты не будут светиться красным, но если вы определенно можете поднести к ним руку, вы почувствуете тепло или инфракрасные лучи, когда они текут наружу к вашей коже.

Однако довольно часто наша кожа не очень полезна для обнаружения инфракрасного излучения. Если вы наполните одну чашку теплой водой, а другую — прохладной и поставите их на стол в другом конце комнаты, вы не поймете, какая из них. Однако тепловизионная камера знает об этом мгновенно.

В такой ситуации люди полагаются на электронные инструменты. По сути, тепловизионные устройства — это помощники нашего зрения, расширяющие наш видимый диапазон, так что мы можем видеть инфракрасный свет в дополнение к видимому свету.Обладая этой расширенной визуальной информацией, мы становимся супергероями электромагнитного спектра.

Но как цифровое устройство может улавливать невидимые тепловые сигналы и создавать изображение, которое имеет смысл для наших глаз? На следующей странице вы увидите, как это стало возможным благодаря развитию цифровой обработки.

Как работает тепловидение | HowStuffWorks

Человеческие глаза — удивительно сложные и замысловатые органы. Они созданы для того, чтобы видеть видимый свет .Этот свет отражается от предметов, делая их видимыми для нас.

Свет, который представляет собой тип излучения , имеет больше вкусов, чем только видимый. Диапазон света охватывает весь электромагнитный спектр , состоящий из видимого и невидимого света, а также рентгеновских лучей, гамма-лучей, радиоволн, микроволн и ультрафиолетового света.

Длина волны (также называемая частотой ) — вот что отличает каждый из этих типов света друг от друга.Например, на одном конце спектра у нас есть гамма-лучи с очень короткими длинами волн. На оборотной стороне спектра у нас есть радиоволны, которые имеют гораздо большую длину волны. Между этими двумя крайностями находится узкая полоса видимого света, и рядом с этой полосой существует инфракрасных длин волн в частотах от 430 ТГц (тетрагерц) до 300 ГГц (гигагерц).

Понимая инфракрасное излучение, мы можем использовать тепловизионные устройства для обнаружения тепловых сигнатур практически любого объекта.Почти вся материя излучает хоть немного тепла, даже очень холодные объекты, такие как лед. Это потому, что если этот объект не находится на абсолютном нуле (минус 459,67 градуса по Фаренгейту или минус 273,15 градуса по Цельсию), его атомы все еще шевелятся и дергаются, натыкаясь и выделяя тепло.

Иногда предметы настолько горячие, что не пропускают видимый свет — подумайте о красных, раскаленных спиралях на электрической плите или углях в костре. При более низкой температуре эти объекты не будут светиться красным, но если вы определенно можете поднести к ним руку, вы почувствуете тепло или инфракрасные лучи, когда они текут наружу к вашей коже.

Однако довольно часто наша кожа не очень полезна для обнаружения инфракрасного излучения. Если вы наполните одну чашку теплой водой, а другую — прохладной и поставите их на стол в другом конце комнаты, вы не поймете, какая из них. Однако тепловизионная камера знает об этом мгновенно.

В такой ситуации люди полагаются на электронные инструменты. По сути, тепловизионные устройства — это помощники нашего зрения, расширяющие наш видимый диапазон, так что мы можем видеть инфракрасный свет в дополнение к видимому свету.Обладая этой расширенной визуальной информацией, мы становимся супергероями электромагнитного спектра.

Но как цифровое устройство может улавливать невидимые тепловые сигналы и создавать изображение, которое имеет смысл для наших глаз? На следующей странице вы увидите, как это стало возможным благодаря развитию цифровой обработки.

Как работает тепловидение | HowStuffWorks

Человеческие глаза — удивительно сложные и замысловатые органы. Они созданы для того, чтобы видеть видимый свет .Этот свет отражается от предметов, делая их видимыми для нас.

Свет, который представляет собой тип излучения , имеет больше вкусов, чем только видимый. Диапазон света охватывает весь электромагнитный спектр , состоящий из видимого и невидимого света, а также рентгеновских лучей, гамма-лучей, радиоволн, микроволн и ультрафиолетового света.

Длина волны (также называемая частотой ) — вот что отличает каждый из этих типов света друг от друга.Например, на одном конце спектра у нас есть гамма-лучи с очень короткими длинами волн. На оборотной стороне спектра у нас есть радиоволны, которые имеют гораздо большую длину волны. Между этими двумя крайностями находится узкая полоса видимого света, и рядом с этой полосой существует инфракрасных длин волн в частотах от 430 ТГц (тетрагерц) до 300 ГГц (гигагерц).

Понимая инфракрасное излучение, мы можем использовать тепловизионные устройства для обнаружения тепловых сигнатур практически любого объекта.Почти вся материя излучает хоть немного тепла, даже очень холодные объекты, такие как лед. Это потому, что если этот объект не находится на абсолютном нуле (минус 459,67 градуса по Фаренгейту или минус 273,15 градуса по Цельсию), его атомы все еще шевелятся и дергаются, натыкаясь и выделяя тепло.

Иногда предметы настолько горячие, что не пропускают видимый свет — подумайте о красных, раскаленных спиралях на электрической плите или углях в костре. При более низкой температуре эти объекты не будут светиться красным, но если вы определенно можете поднести к ним руку, вы почувствуете тепло или инфракрасные лучи, когда они текут наружу к вашей коже.

Однако довольно часто наша кожа не очень полезна для обнаружения инфракрасного излучения. Если вы наполните одну чашку теплой водой, а другую — прохладной и поставите их на стол в другом конце комнаты, вы не поймете, какая из них. Однако тепловизионная камера знает об этом мгновенно.

В такой ситуации люди полагаются на электронные инструменты. По сути, тепловизионные устройства — это помощники нашего зрения, расширяющие наш видимый диапазон, так что мы можем видеть инфракрасный свет в дополнение к видимому свету.Обладая этой расширенной визуальной информацией, мы становимся супергероями электромагнитного спектра.

Но как цифровое устройство может улавливать невидимые тепловые сигналы и создавать изображение, которое имеет смысл для наших глаз? На следующей странице вы увидите, как это стало возможным благодаря развитию цифровой обработки.

Что такое тепловизионная камера? Как это работает?

Что такое тепловизор?
Опубликовано 19 июля 2019 г.

Тепловизионная камера захватывает и создает изображение объекта с помощью инфракрасного излучения, испускаемого объектом, в процессе, который называется тепловизором.Созданное изображение представляет температуру объекта. Технология, лежащая в основе тепловизионных камер, была впервые разработана для военных. Однако изобретение тепловизора связано с историей термографии, которая началась в 1960 году сэром Уильямом Гершелем, астронавтом, который открыл инфракрасный свет.

В 1860 году американский астроном Сэмюэл Пирпонт Лэнгли изобрел болометр — устройство, измеряющее инфракрасное или тепловое излучение. А в 1929 году венгерский физик Калман Тиханьи изобрел чувствительную к инфракрасному излучению электронную телевизионную камеру, которая могла снимать тепловые изображения.

Как инфракрасное излучение, так и видимый свет являются частью электромагнитного спектра, но, в отличие от видимого света, инфракрасное излучение не может восприниматься человеческими глазами напрямую. Это объясняет, почему на тепловизионную камеру не влияет свет, и она может дать четкое изображение объекта даже в темноте.

Тепловидение — это преобразование инфракрасного света в электрические сигналы и создание изображения с использованием этой информации.

В то время эта технология была революционной, но сегодня она широко используется.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *