Водный аппарат – ПОДВОДНЫЙ АППАРАТ • Большая российская энциклопедия

Содержание

Подводный аппарат — Howling Pixel

Подводный аппарат (англ. Submersible) — небольшое судно или техническое устройство, используемое для выполнения разнообразных задач в толще воды и на морском дне. В отличие от подводной лодки, как правило, имеет ограниченные возможности по автономности и поэтому работает во взаимодействии с обеспечивающим судном-носителем. Подводные аппараты могут работать на глубине недоступной для подводных лодок и водолазов.

До наших дней дошли миниатюры, повествующие, что в IV веке до н. э. Александр Македонский совершил погружение на морское дно в каком-то подводном аппарате. Изображения не отличаются технической достоверностью, так, на одном Александр погружается в аппарате, похожем на водолазный колокол, на другом — в вертикально стоящем цилиндре, на третьем — в стеклянной бочке. Македонский одет то в арабский костюм, то в мантию европейских королей предположительно XIII века. Также неизвестно, могли ли стеклодувы в IV веке до н. э. изготавливать большие прочные стеклянные сосуды. Если Александр Македонский и погружался в морскую пучину, то на очень небольшую глубину, иначе аппарат просто бы не выдержал давления воды, и ненадолго, иначе воздух быстро бы стал непригодным для дыхания.

Классификация подводных аппаратов

Подводные аппараты делятся на две основные категории: Обитаемые подводные аппараты (ОПА) и Подводные роботы

По глубине погружения подводные аппараты условно делят на аппараты:

  • для малых глубин — до 200 м
  • для средних глубин — до 2000 м
  • глубоководные — свыше 2000 м

По степени зависимости от обеспечивающего судна:

  • автономные, способные погружаться, всплывать и перемещаться самостоятельно;
  • неавтономные, связанные при погружении с обеспечивающим судном тросом или кабелем.

Подводные обитаемые аппараты

По конструктивным особенностям в отдельные группы можно выделить аппараты следующих категорий:

  • батискаф — особенностью является наличие поплавка заполненного бензином; способны погружаться на любые глубины Мирового океана, включая предельные;
  • батиплан — буксируемый аппарат-«подводный планер» для наблюдений на небольших глубинах;
  • аппараты с отсеком для выхода водолазов в воду — оснащены гипербарическим отсеком для транспортировки водолазов;
  • спасательные аппараты — оснащены пассажирским отсеком, стыковочным устройством и шлюзовой камерой для спасения экипажей подводных лодок;
  • многоместные туристические подводные лодки — служат для подводных экскурсий, имеют пассажирский салон и дополнительные иллюминаторы.

Подводные необитаемые аппараты

См. также

  • АС-30
  • АС-34
  • Бестер-1
  • Бентос-300 — серия из двух советских экспериментальных подводных лодок разработки института «Гипрорыбфлот».
  • Мир — глубоководный исследовательский комплекс, объединяющий судно и два ГОА «Мир», оснащённый навигационным оборудованием и научными приборами для проведения широкого комплекса океанологических исследований.
  • Консул
  • ОСА-3 600 — подводный обитаемый динамически стабилизированный аппарат разработки института «Гипрорыбфлот».
  • Русь
  • Батискаф — глубоководный автономный (самоходный) аппарат для океанографических и других исследований.
  • Подводная лодка

Литература

  • Д. В. Войтов Подводные обитаемые аппараты. — М.: АСТ, Астрель, 2002.
  • Диомидов М. Н., Дмитриев А. Н. Подводные аппараты, — Л., 1966.
  • Королёв А. Б. Штурм гидрокосмоса 1923—2013, — М., 2013.

Bluefin-21

Bluefin-21 (рус. «голубой тунец») — автономный беспилотный подводный аппарат, разработанный американской компанией Bluefin Robotics. Предназначен для поисково-спасательных операций, морского мониторинга, научных исследований. Широко применялся в апреле 2014 года для поиска обломков пропавшего пассажирского авиалайнера Boeing 777 авиакомпании Malaysia Airlines.

FALCON

FALCON — Малогабаритный телеуправляемый подводный аппарат малого класса. Разработан компанией Saab Seaeye.

Предназначен для выполнения поисковых и обследовательских работ в прибрежных водах. Построен на несущей раме из полипропилена. Он оборудован 4 горизонтальными и 1-м вертикальным движителем, цветной видеокамерой (480 ТВЛ, 0.2 люкс) на платформе с изменяемым углом наклона ±90°.

Модульная конструкция FALCON обеспечивает быструю замену вышедшего из строя элемента.

SP

SP — аббревиатура

SP-350 Denise

SP-350 Denise («Дениза»), известна также как «ныряющее блюдце» (фр. soucoupe plongeante) — малый подводный аппарат, рассчитанный на экипаж из двух человек и глубину погружения до 400 м на срок до 4 часов (ограничено ёмкостью аккумуляторов, запас кислорода рассчитан на 24 часа). Создана Жаком-Ивом Кусто и инженером Жеаном Молларом во Французском центре подводных исследований.

Подводный аппарат перемещается благодаря управляемым водомётным движителям, позволяющим ему двигаться во всех направлениях, а также поворачиваться вокруг вертикальной оси. Члены экипажа попадают внутрь через люк на «верхней палубе» корпуса, а во время погружения лежат «бок о бок» на матрасах, наблюдая за происходящим за бортом через иллюминаторы в нижней части корпуса. Для ночных погружений и фотосъёмки на больших глубинах используются электрические лампы. При необходимости пилот может выдвинуть электрическую руку-манипулятор, чтобы поднимать объекты со дна и подносить их к иллюминатору.

Стальной прочный корпус «ныряющего блюдца» в плане имеет форму практически правильного круга диаметром 2 м, высотой 1,43 м и способен выдержать давление, превышающее 90 кг/см², что соответствует глубине порядка 900 м. На практике глубина погружения ни разу не превысила 300 м — из соображений безопасности.

SP350 имеет положительную плавучесть. Отрицательная плавучесть для погружения достигается при помощи балласта, который может быть сброшен в аварийной ситуации. Для дифферентовки пилот включает насосы и ртуть перекачивается из одной балластной цистерны в другую.

Пилоты могут аварийно покинуть «ныряющее блюдце» под водой через верхний люк, если судно погружено на глубину не более чем на 100 метров (разумеется, в аквалангах или дыхательных аппаратах).

Спуск на воду и подъём лодки осуществляются с помощью судового подъёмного крана.

Автономный необитаемый подводный аппарат

Автономный необитаемый подводный аппарат — АНПА (англ. autonomous underwater vehicle — AUV) подводный робот, чем-то напоминающий торпеду или подводную лодку, перемещающийся под водой с целью сбора информации о рельефе дна, о строении верхнего слоя осадков, о наличии на дне предметов и препятствий. Питание аппарата осуществляется от аккумуляторов или другого типа батарей. Некоторые разновидности АНПА способны погружаться до глубины 6000 м. АНПА используются для площадных съёмок, для мониторинга подводных объектов, например трубопроводов, поиска и обезвреживания подводных мин.

АНПА представляют собой особый класс подводно-технических средств (ПТС) с присущими только им функциональными и конструктивными особенностями. Создание и разработка АНПА является сложно реализуемой задачей ввиду выдвигаемых противоречивых требований по использованию и эксплуатации аппаратов данного типа. Например, необходимо обеспечить длительную автономность аппарата за счет использования достаточного количества энергоносителей, но при этом соблюсти ограничение по весу.

Основные задачи, решаемые при помощи АНПА:

Обзорно-поисковые работы: инспекция подводных сооружений и коммуникаций, поиск и обследование затонувших объектов.

Геологоразведочные работы: топографическая, фото- и видеосъемка морского дна, акустическое профилирование, картографирование рельефа.

Подледные работы: обслуживание систем освещения, прокладка кабеля и трубопроводов.

Океанографические исследования.

Экологический мониторинг.

Работы военного назначения: патрулирование, противоминная оборона, рекогносцировка (разведка).

Батиплан

Батипла́н или подводный самолёт (от др.-греч. βαθύς — «глубокий» и лат. planum — «плоскость») — неавтономный подводный аппарат, который использует для погружения гидродинамическую силу «подводных крыльев» вместо балластных цистерн. Батипланы используются для наблюдения под водой за работой тралов, подводных кино-фотосъёмок, для наблюдений за поведением рыбы в косяке в естественных условиях и в зоне действия рыболовного орудия и для других подводных исследований.

По способу погружения батиплан классифицируется как подводный аппарат с динамическим принципом погружения. Батипланы транспортируются на специально оборудованных судах, а в рабочем положении буксируются ими. Батипланы способны погружаться на глубину до 100—200 метров. Экипаж составляет 1-2 человека.

Батискаф

Батиска́ф (Bathyscaphe) (от греч. βαθύς — глубокий и σκάφος — судно) — автономный (самоходный) подводный аппарат для океанографических и других исследований на больших глубинах. Основное отличие батискафа от «классических» подводных лодок состоит в том, что батискаф имеет лёгкий корпус, представляющий собой поплавок, заполненный для создания положительной плавучести бензином или иным малосжимаемым веществом легче воды, несущий под собой прочный корпус, как правило изготовленный в виде полой сферы — гондолы (аналог батисферы), в которой в условиях нормального атмосферного давления находятся аппаратура, пульты управления и экипаж. Движется батискаф с помощью гребных винтов, приводимых в движение электромоторами.

Гидростат

Гидростат (от др.-греч. ὕδωρ — вода и στατός — стоящий, неподвижный):

Гидростат (подводный аппарат) — подводный аппарат, опускаемый на тросе с судна-базы для выполнения подводных исследований и работ.

Гидростат (прибор) — реле влажности, регулирующее устройство, срабатывающее при изменении влажности воздуха. Используются в системах вентиляции и кондиционирования.

Гидростат — прибор, регулирующий глубину хода подводных аппаратов (например торпед).

Гидростат — камера, в которой при постоянной температуре создаётся 100%-я влажность (точка росы). Обычно применяется для испытаний материалов.

Гном (робот)

«Гном» — российский телеуправляемый подводный аппарат класса micro (по международной номенклатуре micro ROV (англ. Remotely Operated Vehicle удалённо управляемый аппарат)), весом 3 кг.

Отличается малыми массо-габаритными характеристиками (весь комплект оборудования порядка 20 кг) и энергопотребления (не более 200 Вт). При этом, по функциональности соответствует подводным аппаратам более старшего класса.

Кайко (подводный аппарат)

Кайко (Kaikō) — дистанционно управляемый подводный аппарат, построенный JAMSTEC для изучения морских глубин. Кайко был вторым из четырёх аппаратов, которые когда-либо достигали дна Бездны Челленджера (по состоянию на 2010 год). В период с 1995 по 2003 годы аппарат совершил более 250 погружений, собрал 350 видов организмов (включая 180 видов бактерий). 29 мая 2003 года Кайко был потерян у побережья острова Сикоку во время тайфуна Чан-Хом из-за обрыва троса, соединяющего его с судном-носителем Kairei.

Мир (глубоководные аппараты)

«Мир» — два советских и российских научно-исследовательских глубоководных обитаемых аппарата (ГОА) для океанологических исследований и спасательных работ. Аппараты имеют глубину погружения до 6 километров.

В настоящее время аппарат «Мир-1» находится в качестве экспоната в калининградском Музее Мирового океана, а «Мир-2» базируется на борту научно-исследовательского судна «Академик Мстислав Келдыш».

Нептун (значения)

Непту́н:

Нептун (мифология) — бог древнеримского пантеона.

Нептун (планета) — планета Солнечной системы.

Нептун (класс планет):

Горячий нептун

Холодный нептун

Нептун — деревня, Пестречинский район, Татарстан, Россия.

Нептун — посёлок, Кировский район, Могилёвская область, Белоруссия.«Непту́н»:

Нептун (лодочный мотор) — лодочный мотор.

Нептун (подводный аппарат) — первый советский экскурсионный подводный аппарат (проект 19730 «Ихтиандр»), спущенный на воду 18 сентября 1990 года.

Нептун (ЦКБ) — конструкторское бюро по проектированию судов на воздушной подушке.

Операция «Нептун» — высадка морского десанта союзных войск в Нормандии в ходе Второй мировой войны, часть Нормандской операции.

«Непту́н» — фонтан:

Нептун (фонтан) в Петергофе

Нептун (фонтан в Берлине) в Берлине

Фонтан Нептун (Флоренция) во Флоренции на площади Синьории

Нептун (подводный аппарат)

«Нептун» (англ. Neptune) — первый советский экскурсионный подводный аппарат. Построен по проекту 19730 «Ихтиандр» на Северном машиностроительном предприятии в начале 90-х. Предназначен для проведения подводных туристических экскурсий в предварительно обследованных районах, где глубина акватории не превышает рабочей глубины погружения аппарата (40 метров).

Огюст Пикар (мезоскаф)

Мезоска́ф «Огюст Пикар» (Mésoscaphe PX-8 «Auguste Piccard») — первый туристический подводный аппарат, сконструирован

Жаком Пикаром в 1964 году для швейцарской выставки. Назван в честь отца конструктора, выдающегося швейцарского учёного Огюста Пикара.

Параван

Параван (англ. paravane, от лат. parare — «защищать, предохранять» (парировать) и англ. vane — крыло, лопасть, руль).

Планер

Планёр:

Планёр — безмоторный (кроме мотопланёров) летательный аппарат тяжелее воздуха, поддерживаемый в полёте за счёт аэродинамической подъёмной силы, создаваемой на крыле набегающим потоком воздуха.

Плáнер самолёта — структурная часть самолёта или вертолёта, его несущая конструкция без силовой установки и внутреннего оборудования.

Подводный планёр — автономный подводный аппарат, приводимый в движение за счёт изменения плавучести.

Планер — конфигурация клеточного автомата «Жизнь».

Противолодочный ракетный комплекс

Противолодочный ракетный комплекс — система морского оружия, предназначенная для поражения подводных лодок. Включает пусковую установку, противолодочные ракеты, комплекс обнаружения подводных лодок и комплекс управления стрельбой. Комплекс аппаратуры обнаружения ПЛ может быть размещен на отдельном носителе. Это может быть вертолёт, самолёт или самоходный (в том числе специализированная подводная лодка) или буксируемый подводный аппарат.Современная противолодочная ракета состоит из ракетной части и противолодочной торпеды. При достижении заданной точки торпеда отделяется от носителя и приводняется на парашюте, после чего производит поиск подводной лодки при помощи собственной головки самонаведения. Также существуют комплексы в которых торпеды нет и поиск лодки не осуществляется а поражение цели обеспечивается за счет избыточной мощности ядерной фугасной боевой части с большим радиусом поражения. Таковы, например, советские комплексы РПК-1 «Вихрь» и РПК-2 «Вьюга».

Появление ПЛРК было вызвано быстрым прогрессом в развитии подводных лодок, при котором подводная скорость субмарин стала близкой к скорости противолодочных надводных кораблей, а в некоторых случаях и большей, чем у надводных кораблей вообще, что делало затруднительным сближение с атакуемой подводной лодкой. Разработка ПЛРК велась в СССР, США, Великобритании, Франции. Кроме того, противолодочные ракето-торпеды могли применяться с подводных лодок и авиационных носителей.

Скат-гео

Скат-гео — автономный необитаемый подводный аппарат. Разработан в Институте проблем морских технологий ДВО РАН. Изготовлен в 1977 г. Предназначается для гравиметрических измерений, эхолокационного обзора дна, геодезических измерений и картографирования. Глубина погружения не превышает 50 м.

Телеуправляемый необитаемый подводный аппарат

Телеуправляемый необитаемый подводный аппарат (ТНПА) (англ. Remotely operated underwater vehicle (ROV)) — это подводный аппарат, часто называемый роботом, который управляется оператором или группой операторов (пилот, навигатор и др.) с борта судна. Аппарат связан с судном сложным грузонесущим кабелем, через который на аппарат поступают сигналы дистанционного управления и электропитание, а обратно передаются показания датчиков и видеосигналы. Пилот находится на борту судна, поэтому аппарат необитаемый.

На других языках


This page is based on a Wikipedia article written by authors
(here).


Text is available under the CC BY-SA 3.0 license; additional terms may apply.


Images, videos and audio are available under their respective licenses.

howlingpixel.com

Вендинговые автоматы розлива воды

Автоматы розлива питьевой воды: основа бизнеса или дополнительный доход?

Идеи для бизнеса часто носятся в воздухе, нужно их только заметить и оформить. Касается это и автоматов по продаже питьевой воды в розлив. Многие задумывались об этом, но не представляли, как реализовать идею. Компания «Watervend» представляет изящное и простое решение этой задачи, способной полностью изменить подход в бизнесе.

Как это работает?

Те, кто бывал в Японии, удивляются огромному количеству на улицах городов автоматов по продаже самой различной продукции. Вернувшись в родной Воронеж, Новосибирск или Мурманск, они не замечают такого их обилия и понимают, что выгодный вид бизнеса в полной мере не развит в нашей стране.

Но какой же из видов автоматов можно считать самым прибыльным и надежным? Несомненно, это продукт, который каждый человек использует ежедневно и без которого даже трудно прожить. И этот продукт – идеально чистая, вкусная и полезная питьевая вода. Так входят в повседневную жизнь автоматы розлива питьевой воды.

Но возможно ли это в принципе, потому что, как считают многие, потребуются большие резервуары для хранения очищенной воды, организация ее подвоза или же установка сложных станций очистки. И здесь на помощь приходят современные технологии, которые встраиваются в автомат розлива воды и позволяющие превратить обычную водопроводную воду в чистейший продукт. Тем более, что расход относительно небольшой, но гарантирующий стабильный доход.

Вендинговые автоматы розлива воды производят очищение воды непосредственно перед её отпуском при помощи многоступенчатой системы очистки:

  • механическим способом для удаления крупных частиц;
  • использование наномембраны для максимальной подготовки к очистке методом обратного осмоса с целью удаления мельчайших частиц механического происхождения;
  • установка для обратного осмоса, при помощи которой убираются соли жёсткости, красители, нитраты, ионы натрия, сульфаты;
  • прохождение через сетку, изготовленную из натурального серебра, что позволяет насыщать воду полезными веществами;
  • добавление минеральных солей, улучшающих вкус воды и необходимых для организма;
  • поступление воды в резервуар для непродолжительного хранения;
  • ионизация воды на выходе, в момент непосредственного отпуска в тару потребителя, что позволяет исключить попадание вредных микроорганизмов.

Такой подход к очистке воды позволяет предложить потребителям не только чистую и полезную, но и удивительно вкусную воду.

Установка автоматов по продаже питьевой воды: особенности

Установить автомат по продаже воды в розлив в магазине, офисном здании или на улице просто — необходима подводка, обычно, водопроводной воды и подключение к электрической сети. Если это автономный киоск, то требуется подвоз воды в цистернах. Отпуск продукта ведется в тару потребителя, и он доступен по цене всем категориям населения.

Занимается небольшая площадь – наши конструкторы сделали все, чтобы минимизировать занимаемое аппаратом место. А автоматы по продаже воды на улице в розлив могут и вовсе размещаться на стене дома – все зависит от марки модели, которую предприниматель намеревается купить для организации нового вида бизнеса. Все уличные агрегаты имеют противандальную защиту и встроенный модуль для предотвращения замерзания воды, поэтому осуществляется круглогодичный отпуск этого востребованного продукта.

Наша компания предлагает самые различные решения для предпринимателя, помогая разработать бизнес-план для скорейшей окупаемости и выхода на получение чистой прибыли. В бизнес-плане учитываются такие моменты, как:

  • предполагамое количество охватываемого услугой населения;
  • проходимость и место размещения оборудования;
  • первоначальные затраты на приобретение оборудования;
  • стоимость последующего обслуживания автомата;
  • цена аренды квадратного метра занимаемой площади.

Мы имеем большой опыт работы с предпринимателями, поэтому готовы предложить оптимальный вариант приобретаемого оборудования. Обслуживание аппарата не представляет сложности, занимает мало времени и требует небольших средств. Расходные материалы в виде сменных фильтров мы предлагаем со значительной скидкой и оказываем всемерную помощь в техническом обслуживании – консультации, гарантийное и постгарантийное обслуживание.

www.watervend.ru

Подводный аппарат: классификация, описание и назначение

Этот термин часто используют для того, чтобы отделить подобные аппараты от субмарин. Однако в общем использовании словосочетание «подводная лодка» может применяться для описания корабля, который по техническому определению фактически является подводным аппаратом.

Существует много типов такого оборудования, включая как самодельные, так и промышленно созданные суда, которые иначе известны как машины с дистанционным управлением или ROV. Они имеют множество применений во всем мире, особенно в таких областях, как океанография, подводная археология, исследования океана, туризм, техническое обслуживание и восстановление оборудования, а также подводная видеосъемка.

История

Первое подводное судно было спроектировано и построено американским изобретателем Дэвидом Бушнелем в 1775 году в качестве средства для ввода взрывных зарядов на вражеские корабли во время американской войны за независимость. Устройство, получившее название «Черепаха Бушнелла», было овальным сосудом из дерева и меди. В нем устроены резервуары, заполненные водой (для погружения), а затем их опорожняли с помощью ручного насоса, чтобы всплыть на поверхность. Оператор использовал два гребных винта с рукояткой для перемещения по вертикали или сбоку под водой. У аппарата были маленькие стеклянные окна сверху и люминесцентная древесина, прикрепленная к корпусу, чтобы им можно было управлять в темноте.

«Черепаха Бушнелла» была впервые введена в эксплуатацию 7 сентября 1776 года в гавани Нью-Йорка, чтобы напасть на британский флагман HMS Eagle. В то время сержант Эзра Ли управлял этим подводным аппаратом. Ли успешно подвел «Черепаху» к нижней части корпуса «Орла», но не смог установить заряд из-за сильных течений воды. Однако на этом история данных видов транспорта не закончилась.

Характеристики

Помимо размера основное техническое различие между подводным аппаратом и субмариной заключается в том, что первый не является полностью автономным и может полагаться на вспомогательный объект или судно для пополнения топлива и дыхательных газов. Некоторые аппараты работают на «тросе» или «пуповине», оставаясь связанными с тендером (субмарина, надводный корабль или платформа). Они, как правило, имеют меньший радиус действия и работают в основном под водой, поскольку большинство бесполезно на поверхности. Подводные лодки (аппараты) способны погрузиться на глубину более 10 км (6 миль) ниже поверхности воды.

Субмарины могут быть относительно небольшими, содержать только небольшую команду и не иметь жилых помещений. Они часто имеют очень ловкую конструкцию, снабженную винтами пропеллера или насосами.

Технологии

Существует пять основных технологий, используемых при проектировании подводных аппаратов. Однополярные аппараты имеют корпус под завышенным давлением, а их пассажиры при этом находятся под нормальным атмосферным давлением. Они с легкостью выдерживают высокое давление воды, которое во много раз превышает внутреннее.

Другая технология, называемая давлением окружающей среды, поддерживает одинаковую нагрузку как внутри, так и снаружи сосуда. Это уменьшает давление, которое должен выдерживать корпус.

Третья технология — это «мокрая субмарина». Под термином подразумевается транспортное средство с затапливаемой внутренней частью. Как в водной, так и в атмосферной среде нет необходимости использовать оборудование SCUBA, пассажиры могут нормально дышать, не надевая ни одно дополнительное устройство.

Рекорды

За счет тросового вытяжения подводные аппараты могут погружаться на большие глубины. Батискаф «Триест» был первым достигшим самой глубокой части океана (почти на 11 км (7 миль) ниже поверхности) на дне Марианской впадины в 1960 году.

Китай с его проектом Цзяолун в 2002 году был пятой страной, которая отправила человека на 3500 метров ниже уровня моря, следуя за США, Францией, Россией и Японией. Утром 22 июня 2012 года погрузочно-разгрузочный комплекс Цзяолун установил рекорд глубокого погружения, когда три человека спустились на 22 844 фута (6 963 метра) в Тихий океан.

Среди наиболее известных и самых длинных в эксплуатации подводных аппаратов — глубоководный исследовательский корабль DSV Alvin, который укомплектован 3 людьми и способен погружаться на глубину до 4500 метров (14 800 футов). Он принадлежит флоту Соединенных Штатов, управляется системой WHOI и с 2011 года совершил более 4 400 погружений.

Джеймс Кэмерон сделал рекордное погружение на дно Глубины Челленджера, самой глубокой известной точки Марианской впадины, 26 марта 2012 года. Подводный корабль Кэмерона назывался Deepsea Challenger и достиг глубины 10 908 метров (35,787 фута).

Последние новинки

Совсем недавно частные фирмы Флориды выпустили серию аппаратов Triton Submarines. SEAmagine Hydrospace, Sub Aviator Systems (или SAS) и Нидерландская фирма Worx разработали небольшие подводные лодки для туризма и разведки.

Канадская компания, которая называется Sportsub, с 1986 года строит персональные рекреационные подводные лодки с конструкциями открытого пола (частично затопленные кокпиты).

Функциональные виды

Небольшие беспилотные подводные аппараты, называемые «морские дистанционно управляемые транспортные средства», или MROV, широко используются сегодня для работы в слишком глубокой или слишком опасной для ныряльщиков воде.

Такие аппараты помогают ремонтировать морские нефтяные платформы и прикреплять кабели к затонувшим кораблям, чтобы поднять их. Такие дистанционно управляемые транспортные средства прикреплены тросом (толстым кабелем, обеспечивающим питание и связь) с центром управления на судне. Операторы на корабле наблюдают видеоизображения, отправленные обратно от робота, и могут управлять пропеллерами и манипулятором аппарата. Затопленный «Титаник» был изучен именно таким транспортным средством.

Батискафы

Батискаф — это самоходный глубоководный погружной подводный корабль, состоящий из кабины экипажа, подобно батисфере, но подвешенный ниже поплавка, а не за поверхностный кабель, как в классическом дизайне батисферы. Многие рассматривают его как вид самоходного подводного аппарата.

Его поплавок заполнен бензином, легко доступен, плавуч и весьма прочен. Несжимаемость топлива означает, что цистерны могут быть очень легко сконструированы, поскольку давление внутри и снаружи резервуаров уравновешивается. Также емкости не имеют задачи полностью выдерживать любые перепады давления, тогда как кабина экипажа призвана оказать сопротивление огромной нагрузке. Плавучесть на поверхности можно легко уменьшить, заменив бензин водой, которая плотнее.

Этимология

Огюст Пикард, изобретатель первого батискафа, сочинил название «батискаф», используя древнегреческие слова βαθύς bathys («глубокое») и σκάφος skaphos («судно» / «корабль»).

Функционирование

Чтобы спуститься, батискаф затапливает воздушные резервуары морской водой. Но в отличие от подводной лодки, жидкость в его затопленных емкостях не может быть смещена со сжатым воздухом, чтобы подняться. Это связано с тем, что давление воды на глубинах, для которых корабль был предназначен для работы, слишком велико.

Например, нагрузка в нижней части Challenger Deep — аппарата, на котором плавал сам Джеймс Кэмерон — более чем в семь раз превышает давление в стандартном цилиндре сжатого газа типа H. Для равновесия этот аппарат использовал железные грузы. Контейнеры с ними состоят из одного или нескольких цилиндров, которые открыты на дне на протяжении всего погружения, а груз удерживается на месте электромагнитом. Это отказоустойчивое устройство, так как оно не требует повышения мощности.

История батискафов

Первый батискаф был назван FNRS-2 — в честь Национального фонда рекреационных исследований — и был построен в Бельгии с 1946 по 1948 год Огюстом Пикардом. FNRS-1 был воздушным шаром, используемым для подъема Пикарда в стратосферу в 1938 году.

Движение первого батискафа было обеспечено электродвигателями с батарейным питанием. Поплавок составил 37 850 литров авиационного бензина. В нем не было туннеля доступа. Сфера должна была быть загружена и выгружена на палубе. Первые плавания подробно описаны в книге Жака Кусто «Тихий мир». Как говорится в повествовании, «судно безмятежно выдержало давление глубин, но было уничтожено незначительным шквалом». FNRS-3 был новым подводным аппаратом, использующим экипажную сферу от поврежденного FNRS-2 и новый, более крупный, 75,700-литровый поплавок.

Второй батискаф Piccard был куплен ВМС США у Италии в 1957 году. В нем было два груза с водяным балластом и одиннадцать резервуаров плавучести, содержащих 120 000 литров бензина. Позже был изобретен подводный аппарат «Посейдон».

В 1960 году батискаф, несущий сына Пикара Жака и лейтенанта Дона Уолша, достиг самого глубокого известного места на поверхности Земли — Глубины Челленджера в Марианской впадине. Бортовые системы указали глубину 37 800 футов (11 521 м), но впоследствии она была исправлена ​​до 35 813 футов (10 916 м) с учетом изменений, вызванных соленостью и температурой.

Аппарат был оснащен мощным источником энергии, который, осветив маленькую рыбу, подобную камбале, поставил вопрос о том, существовала ли жизнь на такой глубине в полном отсутствии света. Экипаж батискафа отметил, что дно состояло из диатомового ила и сообщал о наблюдении какого-то типа камбалы, напоминающего подошву, длиной около 1 фута и 6 дюймов в поперечнике, лежащей на морском дне.

В 1995 году японцы отправили автономный подводный аппарат на эту же глубину, но позже он был потерян в море. В 2009 году команда из Океанографического института Вудс-Хоул отправила роботизированную подводную лодку по имени «Нереус» на дно впадины.

Изобретение батисферы

Батисфера (от греческого βαθύς, бана, «глубокая» и σφαῖρα, сфайра, «сфера») была уникальной сферической глубоководной подводной лодкой, которая управлялась дистанционно и опускалась в океан на тросе. Она использовалась для проведения серии погружений у берегов Бермудских островов с 1930 по 1934 год.

Батисфера была спроектирована в 1928 и 1929 годах американским инженером Отисом Бартоном и стала известна благодаря тому, что натуралист Уильям Биб использовал ее для изучения подводной дикой природы. По своему строению батисфера близка к торпедному подводному аппарату.

fb.ru

Очищение, аппарат для воды

С тех пор, как человек понял, что обычную сырую воду пить уже нельзя, прошло несколько веков. За это время инженерная мысль ушла далеко вперед, так что в наличии есть масса разнообразных инструментов и аппаратов, при помощи которых можно обработать воду так, что она даже изменит свой вкус. Впрочем, обо всем этом можно рассказать подробнее и с точки зрения, например, очистки воды.

Как все начиналось

Самый первый аппарат – обычный фильтр, который состоял из нескольких слоев. Воды туда помещалось немного, но зато она очищалась от основных загрязнений. Фильтр немного напоминал современные, поскольку технология была схожа: сначала вода лишалась крупных кусков грязи, затем мелких, затем всего остального. В ней могла плавать лишь очень мелкая грязь или пыль. После этого вода отстаивалась и становилась совершенно чистой. Изобрели такой фильтр более 400 лет тому назад. С тех пор аппарат, которым очищают воду, преобразился и стал намного более эффективным.

От нагрева вода также меняла свои свойства. При нагреве она немного очищалась, но этого было недостаточно. Если посмотреть в древнейшие времена, когда каждый мог изобрести элементарное приспособления для самого себя, вряд ли можно отметить того, кто впервые стал кипятить воду. Ведь для нагрева воды недостаточно было одного огня. Нужна была емкость, а также особое место, где огонь можно было развести. Поэтому в качестве аппарата, первого аппарата, служащего для нагрева воды, можно выделить котелок над огнем (либо другую емкость).

Но использовать газ для нагрева воды стали намного позже. Первой газовой горелке едва ли исполнилось сто лет, хотя сам природный газ, пригодный для готовки, открыли достаточно давно. Можно говорить много о том, что именно было создано в процессе «эволюции» аппаратов, но на самом деле достаточно будет упомянуть лишь несколько основных этапов, которые были не просто эволюционными, но именно революционными и несущими наибольшую пользу людям.

Очищение при помощи нагрева воды

Поскольку аппарат, который люди использовали долгое время в естественных условиях, стал непригоден для тех, кто проживает в собственном жилище, его пришлось модифицировать. Аппарат из простого костра стал камином: костром, обложенным со всех сторон камнем. Его нельзя назвать по-настоящему революционным изобретением, но кипение воды при нагреве в огне над камином было просто завораживающим. Со временем, костру и камину, на смену пришел газ.

Первая газовая плита появилась не так давно. Но зато она сразу же обрела большую популярность: готовить в квартирах стало намного приятнее и удобнее, газ нагревал воду без коптящего пламени. Следовательно, когда газ появился в квартирах, наступил переломный момент. Ведь к тому моменту электричества не было, а подвести трубу не так сложно. Впрочем, это уже пройденный этап развития аппаратов для нагрева воды.

Но если вернуться к классическим решениям, которые относятся к питьевой воде, можно отдельно отметить несколько способов очистки воды, которые обладают различной эффективностью, пропускной способностью, но при этом выдают более или менее чистую воду. В конечном итоге любой способ очистки воды будет хорош, если приложить больше усилий, времени и технологий. Через максимально плотный фильтр можно добиться хорошей очистки воды, но при этом понадобится очень много времени для того, чтобы осуществить этот процесс. Ускорить его можно, если добавить давления, но это опять же будет не самым удобным способом для обычных людей, которые не смыслят в инженерии и гидравлике, ничего.

Электричество для очистки

Для очистки воды теперь газ используется гораздо реже чем электричество. И это будет логично, потому что процесс электролиза или же разложения воды для её очистки более эффективен. Через очистку можно получить более чистую жидкость, причем в ней не будет не только никаких опасных микроорганизмов, но еще и солей, которые при пропускании через них электрического тока полностью лишатся возможности соединяться с чем-либо еще и просто выпадают в осадок. Такая очистка полностью уничтожает всю микрофлору – «мертвую» жидкость поглощать никому не хочется.

Существует еще множество разнообразных фильтров, которые созданы на основе угля или же других элементов. В любом случае, что очень удобно, они очищают воду до тех пор, пока не забьются полностью. Установленный фильтр существенно улучшает состояние жидкости. Не только бактерии, но еще и мелкий песок и даже пыль, которую не мог очистить обычный фильтр, угольный вполне способен отсеять. Следовательно, чтобы привести воду из ненадлежащего вида в более или менее нормальный, будет достаточно хорошего фильтра, а вот чтобы вскипятить ее, существует множество способов, электричество, газ, костер, но самый распространенный способ очистки это все таки кипячение и фильтрация.

Facebook

Twitter

Вконтакте

Google+

voday.ru

Остекление подводных аппаратов

На сегодняшний день человек успел исследовать только 5% океанических глубин на Земле. Ученые, конструкторы, разработчики прикладывают максимум усилий для того, чтобы эта цифра постоянно росла. Именно поэтому в мире активно развивается направление создания различных подводных аппаратов, с помощью которых исследование океанических просторов становится простым и доступным процессом.

Все современные подводные аппараты имеют схожий принцип работы. Их назначение – проведение научных исследований и подводных экскурсий, сбор качественного фото- и видеоматериала, измерение различных параметров, составление карт подводного мира. Субмарины оснащены системами навигации, регулировки уровня кислорода и освещения, связи с сушей, эхолокации, видео- и фотосъемки. Компас, спидометр, термостат, датчики давления, глубины, курса, высоты, вращения, наклона, местоположения, влажности, скорости погружения – все это оборудование работает в автоматическом режиме. Чтобы батискаф не сбился с курса, включается планировщик маршрутов.

Одна из самых интересных функций – автофотографирование. Специальные инфракрасные датчики точно определяют местоположение проплывающих подводных обитателей и делают снимки в наилучшем качестве и с правильного ракурса. Также система оснащена оборудованием для создания трехмерных панорамных визуализаций окружения. Созданные панорамы могут использоваться для организации последующих виртуальных путешествий. Батискафы разрабатываются таким образом, чтобы внутри кабины поддерживалось стандартное атмосферное давление. Поэтому никаких особых требований к состоянию здоровья экипажа и пассажиров не предъявляется.

Акриловое остекление кабин подводных аппаратов

Техническая реализация данных проектов стала возможной во многом благодаря акриловому остеклению. Акрил эффективно и безопасно работает там, где другие материалы попросту бессильны. Большинство подводных аппаратов сегодня оснащаются прозрачными сферическими кабинами из акрила. Выбор в пользу сферической формы вполне обоснован по следующим причинам:

— Обтекаемые сферические конструкции выдерживают большое давление, легко маневрируют на глубине и гарантируют полную безопасность для экипажа и пассажиров.

— Акриловые сферы способны работать под огромным давлением на глубине в несколько километров. Для обеспечения максимальной надежности проводятся специальные расчеты толщины остекления. Этот параметр подбирается с большим запасом прочности.

— Прозрачные полусферы придают подводным аппаратам просто невероятный внешний вид. Батискафы и субмарины становятся похожими на корабли пришельцев или аппараты из далекого будущего.

— Акриловое стекло обладает высочайшей прозрачностью, которая не снижается при постоянной эксплуатации в воде. Кабина обеспечивает отличный панорамный обзор без искажения форм, размеров и цветов.

— Перед наблюдателем открывается реальная картина подводного мира.Точность передаваемого изображения позволяет вести фото- и видеосъемку непосредственно из кабины и получать яркие, красочные снимки.

— На поверхности акриловых сфер не появляется зелень и грибок, поскольку акрил устойчив к воздействию любых биологических факторов.

— Находясь в прозрачной акриловой «капсуле», человек ощущает эффект полного погружения в подводные красоты. Создается впечатление, будто между наблюдателем и морскими глубинами нет никакого барьера.

Персональный батискаф Manatee

Конструктор Эдуардо Гальвани разработал модель персонального бакискафа Manatee, с помощью которого каждый желающий при минимальной подготовке сможет исследовать океанические глубины. Аппарат оснащен надежными аккумуляторами и мощными двигателями, за счет чего упрощается его маневренность. Управлять этим чудом техники несложно – для этого достаточно освоить функционал главного джойстика и панели со встроенной операционной системой и сенсорным дисплеем. В кабину батискафа подается кислород из расчета 12-часовой работы плюс 100 резервных часов на случай аварии. Максимальная глубина погружения аппарата – более 9 километров. Кабина рассчитана на 4 человека. Максимальная скорость перемещения – 25 километров в час. Внешнее и внутреннее освещение организовано с помощью высокоинтенсивных светодиодов. Для остекления кабины пилота использовано устойчивое к высокому давлению акриловое стекло сферической формы, сквозь которое наблюдатель может рассмотреть подводный мир в деталях.

Подводная лодка Тритон 3300/3

Подводный аппарат Тритон 3300/3 стоимостью в три миллиона долларов рассчитан на погружение на глубину до одного километра. Кабина выполнена в виде огромного пузыря, для изготовления которого использовано акриловое стекло. Сквозь стекло открывается роскошный панорамный вид на подводные красоты. Для освещения глубоководного ландшафта используются светодиодные прожекторы.

Аппарат для подводных исследований C-Researcher 3

Голландская компания U-Boat Worx представила миру новинку – подводный аппарат C-Researcher 3, раотающий на глубине 1,7 км. Батискаф предназначен для проведения научных подводных исследований и рассчитан на 16 часов непрерывной работы. Восьмитонный аппарат оснащен специальными инструментами для видеосъемки, фотосъемки и создания трехмерных и двухмерных карт. С помощью роботизированных манипуляторов можно брать образцы растений, фауны или грунта со дна океана. Кабина аппарата – огромная прозрачная сфера из высокопрочного акрилового стекла, придающая субмарине восхитительный футуристичный вид. Кабина вмещает до 3 человек (пилот и два пассажира). Аппарат оснащен по последнему слову техники. Управление осуществляется при минимальном участии человека. Направление, маршрут, скорость, режим проведения исследований – все эти параметры можно регулировать с помощью сенсорного дисплея и эргономичной приборной панели.

Подводный аппарат C-Explorer 2

Еще один продукт компании U-Boat Worx предназначен для проведения исследований на глубине до 100 метров и проведения сеансов безопасного дайвинга. Подводный аппарат C-Explorer 2 весит 3 тонны, вмещает двух человек – пилота и пассажира. Время автономной работы на глубине – 8 часов. Несмотря на меньшую мощность и небольшие доступные глубины, аппарат выполняет такие же функции, как и вышеописанный C-Researcher 3. Несмотря на то, что основное назначение аппарата заключается в проведении серьезных научных исследований, это не мешает ему служить отличным инструментом для развлекательных экскурсий. Кабина аппарата изготовлена из прозрачной акриловой полусферы, благодаря которой панорамный обзор открывается на все 360 градусов.  

Частная субмарина SeaBird

Компания AquaVenture изобрела самую быструю в мире частную субмарину SeaBird. Для этого разработчикам не пришлось устанавливать мегамощный двигатель и оснащать подводную лодку сверхсовременным оборудованием. Более того, в субмарине SeaBird вообще нет двигателя! Как удается подводной лодке разгоняться для высоких скоростей без двигателя? Очень просто. Аппарат прикрепляется толстым тросом к катеру, который плывет по поверхности воды. Скорость перемещения субмарины может достигать 40 километров в час, когда самые новые модификации полноценных аналогов перемещаются со скоростью 20-25 км/ч. Наличие тросового соединения ограничивает маневренность лодки, но при необходимости аппарат может работать под водой на глубине 90 метров в течение трех суток. Две кабины для пилота и пассажиров выполнены из прозрачных акриловых полусфер. Безусловно, такая конструкция вряд ли подойдет для проведения серьезных научных исследований, но как развлекательный экстрим-аттракцион она не имеет равных.

Подводная лодка на солнечных батареях Reef Explorer

Дизайнер Герт-Ян ван Брегель создал концепцию подводной лодки, работающей на солнечных батареях. Данная модель предназначена не для научных исследований, а для развлечения. Лодка будет погружаться в воду не полностью, а лишь частично. Но даже такого погружения вполне достаточно, чтобы приблизиться к прекрасному подводному миру. Для беспрепятственного наблюдения за океаническими красотами корпус аппарата также планируется оснастить прочным акриловым остеклением.

Новейшие подводные аппараты проектируются таким образом, чтобы подводные исследования, экскурсии и путешествия были максимально безопасными и эффективными. Жесткие требования предъявляются к надежности и внешнему виду таких конструкций. Субмарины и батискафы с акриловым остеклением соответствуют всем этим требованиям.

Компания «АкрилШик» занимается изготовлением полусфер и сфер из качественного акрилового стекла. Мы производим конструкции различных размеров, в том числе экстремально большие. Мы гарантируем качество поверхности, надежность и прочность изготовленной продукции. Для получения более детальной информации о продукции и услугах компании свяжитесь с нашим менеджером.

Дата создания : 18  ЯНВ  2017
Автор «Акрилшик»

acrylshik.ru

Подводный аппарат

ПОДВОДНЫЙ АППАРАТ (а. submarine unit; н. Unterwassergerat; ф. appareil sous-marin; и. equipo submarino) — судно или техническое устройство, перемещающееся в толще воды и (или) по дну и используемое для научных исследований, поисковых и аварийно-спасательных операций, а также производственных работ под водой. В частности, подводные аппараты применяются для проведения геологических и геофизических измерений вблизи океанского дна с целью изучения геологического строения дна океана, состава слагающих его пород, поиска и разведки месторождений полезных ископаемых в Мировом океане, а также при эксплуатации месторождений, для осмотра и ремонта буровых платформ и т.п.

Подводные аппараты делятся на 3 основных класса: обитаемые нормобарические, обитаемые гипербарические и необитаемые (телеуправляемые). Подводные аппараты классифицируются также по типу выполняемых работ — на гидрофизические, геологические, поисковые, специализированные рабочие, осмотровые и др.; по характеру перемещений в водной среде — на буксируемые, плавающие, перемещающиеся (в т.ч. шагающие) по грунту; по способу подачи электропитания — на привязные, автономные и комбинированные; по глубине проведения работ — для малых глубин (до 600 м), средних глубин (до 2000 м) и глубоководные (свыше 2000 м).

К нормобарическим обитаемым подводным аппаратам относятся привязные и автономные исследовательские и транспортные средства, в герметическом корпусе которых поддерживаются параметры дыхательной смеси, близкие к нормативным атмосферным. Примером аппаратов этого типа является подводный аппарат «Пайсис», предназначенный для океанологических (в т.ч. геологических) исследований (рис. 1).

Он состоит из прочного металлического корпуса (обитаемого отсека), вокруг которого на трубчатой раме смонтированы отдельные элементы различных бортовых функциональных систем: движительно-рулевого комплекса, служащего для передвижения и маневрирования подводного аппарата на поверхности и под водой; электроэнергетической установки; системы погружения и всплытия, обеспечивающей значительное изменение плавучести путём заполнения водой или продувки воздухом цистерн главного балласта; уравнительно-дифферентной системы, позволяющей изменять в широких пределах угол наклона (дифферент), скорость погружения и всплытия подводного аппарата вплоть до зависания аппарата на выбранном рабочем горизонте. Аппарат снабжён также системами: гидравлики, служащей для привода забортного навесного оборудования и манипуляторов; научной информации, включающей в себя датчики океанологических параметров, регистрирующую аппаратуру и фототелевизионный комплекс; связи и навигации, необходимой для определения местонахождения аппарата и передачи информации с подводного аппарата на поверхность и обратно. Состав воздушной смеси, температура и влажность в обитаемом отсеке поддерживаются системой жизнеобеспечения. Для придания необходимой внешней формы аппарату служит съёмный легкий корпус. Упрощённой модификацией нормобарических обитаемых подводных аппаратов являются спускаемые на тросе с надводного судна батисферы и гидростаты — толстостенные наблюдательные камеры, способные выдерживать давление больших глубин, с иллюминаторами и входным люком, оснащённые светильниками, фотокиноаппаратурой, телефонной связью и измерительными приборами. Гидростаты в отличие от шарообразных батисфер имеют цилиндрическую форму со сферическими днищами. Для достижения предельных глубин (до 11 км) используются батискафы (рис. 2) — обитаемые подводные аппараты, состоящие из лёгкого стального корпуса-поплавка, наполненного для создания положительной плавучести бензином, и жёстко соединённой с ним батисферы (гондолы), в которой размещается экипаж, научные приборы и оборудование аппарата.

Всплытие и погружение батискафа обеспечивается за счёт сбрасываемого переменного балласта. Однако, несмотря на возможность достижения предельных глубин, батискафы имеют малую манёвренность, а также значительную массу и габариты, что вызывает проблему транспортировки подводных аппаратов на большие расстояния.

В гипербарических обитаемых подводных аппаратах акванавт выполняет работу непосредственно в водной среде в условиях повышенного давления (см. Водолазные работы). К гипербарическим относятся обитаемые подводные аппараты с выходом водолазов в воду (рис. 3), в т.ч. мобильные подводные технические базы и лаборатории.

Основные преимущества этих аппаратов — возможность доставки акванавтов на значительные расстояния от места погружения и обеспечения длительной их работы под водой, а также возможность стыковки с камерами подводных технических комплексов и транспортировки в них обратно людей и оборудования. Конструктивно такие подводные аппараты во многом аналогичны нормобарическим обитаемым аппаратам и отличаются от них наличием водолазного отсека, предназначенного для транспортировки водолазов под давлением, соответствующим давлению окружающей среды на рабочем горизонте; баллонов для хранения газовых смесей системы жизнеобеспечения водолазов, большим количеством навесного оборудования и инструмента, а также источниками энергии значительной мощности.

К необитаемым подводным аппаратам относятся погружаемые под воду и управляемые с поверхности технические средства, оснащённые специальным оборудованием, приборами и инструментами, соответствующими характеру выполняемых задач. В этот класс входят разнообразные по назначению и конструкции привязные, буксируемые и автономные телеуправляемые подводные аппараты Типичным представителем этого класса является привязной телеуправляемый подводный аппараты «СФ-1» (рис. 4), состоящий из прямоугольной трубчатой рамы, на которой установлены цистерны положительной плавучести, дифферентная цистерна, баллон со сжатым воздухом для продувки балластно-дифферентной системы.

В центральной части рамы смонтированы контейнеры с электронной аппаратурой и станцией гидравлики. Движительный комплекс включает в себя винты горизонтального и вертикального хода. Аппарат оснащён буровым блоком, батометрами, фототелекамерами, датчиками физических и химических параметров воды, манипулятором. Сигналы с навигационных приборов (гирокомпаса, лага, эхолота и др.), установленных на подводном аппарате, по кабелю поступают в ЭВМ, расположенную на обеспечивающем судне, что позволяет управлять аппаратом с большой точностью. Буксируемые телеуправляемые подводные аппараты обычно не имеют движительных комплексов и дифферентных систем, а их перемещение осуществляется за счёт хода судна-носителя. Такие подводные аппараты в основном представляют собой гидроакустические и (или) фототелевизионные комплексы, предназначенные для съёмки и картографирования донной поверхности. Автономные телеуправляемые подводные аппараты (рис. 5) отличаются отсутствием кабельной линии связи и электроснабжения с судна-носителя.

При этом управляющие и информационные сигналы передаются по гидроакустическому каналу. Такие подводные аппараты обычно состоят из корпуса обтекаемой формы с размещёнными внутри блоками навигационных приборов и управления движительно-рулевого комплекса, источниками тока относительно большой энергоёмкости и развитыми бортовыми системами сбора и обработки информации.

Телеуправляемые подводные аппараты обычно имеют малые массу и габариты, обладают неограниченным временем работы под водой и высокой манёвренностью. Обитаемые подводные аппараты в отличие от телеуправляемых более универсальны по назначению, позволяют проводить уникальные визуальные наблюдения и отбор большого количества образцов донных пород.

Исторический очерк. К первым подводным аппараты относятся подводные лодки малого водоизмещения, построенные из дерева голландским механиком К. ван Дреббелем (1620) и русским изобретателем-самоучкой Е. Никоновым (1724). В 1776 была создана металлическая подводная лодка «Черепаха» американским инженером Д. Бушнеллом, с 30-х гг. 19 века аналогичные подводные аппараты стали строиться в России, Германии и Франции, Первоначально создавались нормобарические обитаемые привязные подводные аппараты. В 1911 американским инженером Г. Гартманом был построен первый гидростат, в котором с научными целями была достигнута глубина 640 метров. В 1923 в CCCP инженером Е. Г. Даниленко был создан гидростат, предназначенный для поиска затонувших судов. В 1927 на нём совершила погружение по геологической программе геолог М. В. Клёнова (первая женщина-гидронавт). В 1929 американские учёные У. Биби и О. Бартон сконструировали первую батисферу «Век прогресса», позволившую достигнуть глубины свыше 1300 м.

Первые расчёты и проекты автономных обитаемых подводных аппаратов были предложены в середине 30-х гг. советскими учёными К. Э. Циолковским и Ю. А. Шиманским. В 1948 первый автономный подводный аппарат — батискаф «ФРНС-2» был построен швейцарским учёным О. Пиккаром и при испытаниях без экипажа на борту достиг глубины 1400 метров. По проектам О. Пиккара во Франции и Италии были созданы в 1953 более совершенные батискафы «ФРНС-3» и «Триест» (в 1960 Ж. Пиккар и Д. Уолш достигли дна Марианской впадины).

Малогабаритный, легкотранспортируемый обитаемый подводный аппарат для малых глубин («Ныряющее блюдце») впервые был построен в 1959 под руководством французского океанолога Ж. Ива Кусто. Начиная с 60-х гг. в различных странах интенсивно строятся малогабаритные автономные обитаемые подводные аппараты. Если в 1970 в мире насчитывалось 45 обитаемых подводных аппаратов, то в 1986 — более 300 аппаратов. Большая часть автономных обитаемых подводных аппаратов рассчитана на глубины до 1500 метров. Для увеличения глубины с начала 80-х гг. стальные обитаемые сферы обитаемых подводных аппаратов заменяются более лёгкими титановыми. Строительство в 1967 (в США) первого гипербарического подводного аппарата «Дип Дайвер» положило начало развитию подобных аппаратов с выходом водолазов в воду. Создаются мобильные крупнотоннажные (до 800 т) подводные исследовательские и технические аппараты, обеспечивающие работу и отдых водолазов в режиме длительного пребывания под давлением.

Предшественником современных телеуправляемых аппаратов является подводный аппарат «КУРВ-I», разработанный в 1965 в США для проведения поиска и подъёма затонувших объектов на поверхность. В последующие годы появились телеуправляемые подводные аппараты нового поколения, имеющие увеличенную глубину, более совершенную фототелевизионную и гидроакустические аппаратуру, а также манипуляторные устройства (например, «КУРВ-II», «КУРВ-III», «Теленавт-1 » — США, «Манта» — CCCP). Производство подводных аппаратов этого типа постоянно увеличивается (в 1970 в мире насчитывалось 26 телеуправляемых подводных аппаратов, к 1986 создано более 400 аппаратов). В 80-х гг. создаются полностью автоматические автономные телеуправляемые подводные аппараты с рабочей глубиной погружения 6000 м.

Среди привязных телеуправляемых подводных аппаратов за рубежом с начала 80-х гг. получили распространение малогабаритные (до 800 мм), лёгкие (до 100 кг) и мобильные привязные аппараты (типа «PCB-225» и «Скорпио» — США; «Трек» — Канада), для доставки которых к месту работы используются специальные подводные боксы-носители, связанные с обеспечивающим судном кабелем-тросом, а с аппаратом тонким кабелем нейтральной плавучести, не оказывающим влияние на его динамику. На последующих образцах телеуправляемых подводных аппаратов (типа «ТРОУ» — Канада и «СФ-1 » — ФРГ) устанавливаются балластные системы, увеличивающие манёвренность аппаратов и позволяющие осуществлять жёсткую посадку на грунт для производства бурильных работ.

Одним из первых необитаемых буксируемых подводных аппаратов явился океанологический комплекс «Дип тоу», созданный в 1963 в США. В последующие годы были созданы буксируемые подводные аппараты («Ангус», «ДСС-125», и «Арго» — США, «Звук» — CCCP), позволяющие осуществлять поисковые операции, картографирование и фотосъёмку дна. В начале 80-х гг. в ФРГ был построен буксируемый геологоразведочный подводный аппарат «Манка-01», предназначенный для отбора и экспресс-анализа проб железомарганцевых конкреций.

Первые геологические исследования с применением подводных аппаратов были проведены в 1962 с борта французского батискафа «Архимед» в жёлобе Пуэрто-Рико (около 9000 м). В последующие годы выполнялись обследования береговых каньонов, коралловых рифов, полей железомарганцевых конкреций и фосфоритов. С 70-х гг. было организовано несколько американских и французских геологических экспедиций по изучению океанических рифтовых зон (в 1973 — Срединно-Атлантического рифта, в 1978-79 — зоны восточно-Тихоокеанского поднятия и Галапагосского рифта).

Первые советские геологические экспедиции с использованием подводного аппарата типа «Пайсис», «Звук», «Манта» были проведены на озере Байкал (1977), в Красноморском рифте (1979-80) и рифте Рейкьянес в Атлантическом океане, в Тихом океане (80-е гг.).

www.mining-enc.ru

Основные элементы и системы подводных обитаемых аппаратов


Любой подводный обитаемый аппарат, независимо от его назначения и глубины погружения, можно представить в виде следующих основных элементов и систем: прочный корпус, легкий корпус, система погружения-всплытия, уравнительно-дифферентная система, система аварийного балласта, энергетическая установка, движительно-рулевой комплекс, система гидравлики, система жизнеобеспечения экипажа, средства навигации, связи, освещения и приборное оборудование.

Прочный корпус

Управление всеми системами аппарата и пилотирование осуществляется из кабины, размещенной внутри прочного корпуса (ПК). ПК испытывает наружное давление воды, возрастающее с каждым метром погружения. Давление это очень велико, достаточно вспомнить опыт Паскаля с бочкой, которая разорвалась в результате воздействия на ее стенки столба воды. Успех и безопасность подводных спусков в основном зависят от надежности ПК, защищающего экипаж подводного аппарата от воздействия разрушительного давления воды. Форма и толщина стенок корпуса при проектировании подводного аппарата задаются с учетом рабочей глубины погружения и типа материала, из которого изготовляется корпус. В качестве материала в основном применяют высокопрочную сталь, титановые и алюминиевые сплавы. Оптимальной считается та форма корпуса с заданным объемом и прочностью, которая обеспечивает наименьший вес. Соотношение веса ПК и его водоизмещения (произведение объема на удельный вес воды) определяет плавучесть аппарата;
чем оно меньше, тем больше плавучесть аппарата. Лучше всего этому требованию отвечает сферическая форма ПК, хотя и существует большое количество подводных аппаратов, имеющих цилиндрические и эллипсоидальные корпуса, в которых достаточно удобно размещается экипаж и оборудование. Сфера более однородна по своей конструкции и устойчива к внешнему давлению. Напряжение, возникающее в материале ПК сферической формы, при условии равенства внешнего давления, диаметра корпуса и толщины стенок, в два раза меньше напряжения в цилиндрическом корпусе. Подводные аппараты со сферическими ПК используются во всем диапазоне глубин. Менее распространены корпуса, состоящие из двух или более сфер, соединенных переходами. Аппараты с цилиндрической формой корпуса работают на глубинах от 100 до 600 м (исключения составляют «Алюминаут» и «Север-2»), Прочные корпуса других форм, например корпус «Дениз» в форме чечевицы, большого применения не нашли. Какую бы форму не имели прочные корпуса, их герметичность зависит от тщательного конструкторского расчета прочности и учета напряжений, возникающих в районах вырезных элементов и отверстий для люка, иллюминаторов и различных вводов в стенках ПК. После изготовления ПК, обвешанный большим количеством тензодатчиков для измерения напряжений, проходит проверку давлением в испытательной камере. Напряжения, возникающие в точках измерения, особенно в местах вырезов, должны не превышать значение предела текучести для материала, из которого изготовлен корпус. Использование для изготовления ПК новых материалов с высоким
показателем удельной прочности (отношение предела текучести к плотности), ударной вязкости, коррозионной устойчивости, пластичности, свариваемости и легкостью механической обработки позволяет значительно увеличить глубину погружения аппарата. В качестве примера можно привести подводные аппараты «Алвин», «Си Клифф» и «Тартл», на которых стальные прочные корпуса были заменены на корпуса из титановых сплавов, что позволило им работать на глубинах 4000 и 6000 м. Высокая удельная прочность и низкая плотность (4,5 г/см3) титана, большое сопротивление на разрыв, коррозионная стойкость и немагнитность ставят его в ряд наиболее перспективных материалов для изготовления прочных корпусов и элементов конструкций подводных аппаратов. Вместе с тем разрабатываются и испытываются превосходящие титан по прочности и упругости стали, способные стать лидерами в производстве корпусов для глубоководной техники. Перспективны стали со сверхвысоким пределом текучести, обладающие высокой прочностью. Пока недостатками таких сталей (NS 90, 10 Ni-8Со) являются недостаточная пластичность и вязкость, а это приводит к уменьшению надежности при ударных воздействиях. Алюминиевые сплавы, которые использовались на первых этапах строительства подводных аппаратов, в силу их плохой свариваемости и малого значения модуля упругости, уступают дорогу новым материалам.

Легкий корпус

Легкий корпус (ЛК) придает аппарату законченный вид и обтекаемость, необходимую для снижения гидродинамического сопротивления. Форма ЛК определяется заданными габаритами подводного аппарата, формой и габаритами прочного корпуса и принципом компановки ряда забортных систем, таких, как система погружения-всплытия, уравнительно-дифферентная и гидравлическая системы, аккумуляторные боксы и двигатели. Наибольшее распространение получили каплевидная и торпедообразная формы ЛК. Небольшое количество аппаратов («Дениз», «Дип Квест») имеет сплющенную или эллипсоидальную («Бивер-4») форму ЛК. Подводные аппараты малых глубин, имеющие цилиндрические ПК, чаще всего обходятся без ЛК («Дип Дайвер»). В качестве материалов для изготовления ЛК используются стекловолокнистые пластики, многослойные материалы на основе эпоксидной смолы, армированной высокопрочным волокном из кевлара, и синтактик (синтактик — плавучий материал из синтактической пены, выдерживающий высокие давления, состоящий из фенольных микробаллонов в эпоксидном наполнителе), реже — легкие алюминиевые и титановые сплавы. Процесс изготовления ЛК из стеклопластика состоит из трех этапов: выполнение по чертежу корпуса «болвана», выклеивание по нему матрицы и заполнение матрицы слоями стекловолокна, пропитанного смолами. ЛК может состоять из нескольких элементов. Верхняя его часть является палубой с ограждением люка ЛК. Килевая часть закрывает аккумуляторы. По бортам ЛК имеет съемные смотровые люки для обслуживания забортных систем.

Система погружениявсплытия

Система погружения-всплытия обеспечивает переход подводного аппарата из надводного в подводное положение и обратно за счет изменения плавучести. В первых безтросовых подводных аппаратах — батискафах — необходимая плавучесть достигалась путем изменения объема бензина в поплавке и количества дроби в бункерах. Дробь для регулировки плавучести применялась и в аппаратах следующего поколения («Алюминаут», «Дип Квест», «Довб», «Сиана», «Си Клифф»). С появлением синтактика, рассчитанного на большие глубины, способного значительно компенсировать вес аппарата, стало возможно отказаться от больших и небезопасных бензиновых поплавков и сильно уменьшить габариты подводных аппаратов. Современные подводные аппараты оснащены цистернами главного балласта (ЦГБ), имеющими достаточно большой внутренний объем, заполняемый при погружении забортной водой. Вода поступает через шпигаты цистерны, замещая воздух, который выходит через открытые клапаны вентиляции. При всплытии аппарата пилот имеет возможность продуть цистерны воздухом из баллонов высокого давления. Продувка прекращается при появлении воздушных пузырьков из шпигатов. Следует отметить, возможность полной продувки ЦГБ ограничена давлением воздуха в баллоне и глубиной, на которой находится аппарат. Обычно для аппаратов малых глубин используют воздух, сжатый до 200 атм., для глубоководных аппаратов давление воздуха в баллонах поднимают до 400 атм. Запаса воздуха в баллонах должно хватить на двойную продувку ЦГБ.
Уравнительнодифферентная система Уравнительно-дифферентная система (УДС) обеспечивает точную регулировку плавучести подводного аппарата, необходимую при фиксации положения аппарата на грунте, исследуемом объекте, зависании в толще, погружении или всплытии с заданной скоростью. Еще одно назначение УДС — изменение дифферента (выравнивание аппарата или обеспечение наклона для работы в специальных случаях). На большинстве подводных обитаемых аппаратах нужная плавучесть достигается соответствующим изменением веса аппарата при неизменном водоизмещении. Увеличение веса за счет приема водяного балласта происходит при заполнении балластных цистерн самотеком или принудительно. Уменьшение веса за счет удаления балласта происходит, когда включаются насосы, откачивающие воду за борт. Природа решила эту задачу миллионы лет назад, создав маленький живой подводный аппарат — Наутилус. Наутилус — моллюск с великолепной витой раковиной, живущий на глубинах до 600. Наутилус легко меняет свою плавучесть, то зависая в толще воды, то опускаясь вниз. Моллюск забирает или выдавливает воду из внутренней трубки, проходящей через всю спиральную раковину, разделенную на герметичные отсеки. Дифферентный насос перекачивает балласт (воду или ртуть) из носовых цистерн в кормовые и наоборот, тем самым меняя количество балласта и дифферент аппарата. В состав УДС, помимо цистерн и дифферентного насоса, входят: насосы морской воды, клапаны, фильтры, трубопроводы, ограничители расхода и пульт управления и конт
роля УДС. Насосы морской воды являются сердцем УДС, они откачивают воду вплоть до максимальной рабочей глубины погружения аппарата. Управляемые клапаны принимают воду в цистерны и позволяют перекачать балласт из носа в корму и обратно, а также откачать воду из цистерн. Ограничители расхода начинают действовать в случае отказа клапанов или разрушения трубопроводов, когда в цистерны врывается забортная вода и служит причиной бесконтрольного погружения аппарата. На пульте управления, кроме тумблеров включения-выключения клапанов и насосов, имеется индикатор уровня воды в цистернах. Еще один принцип регулировки плавучести заключается в изменении водоизмещения подводного аппарата при сохранении постоянного значения его веса. Работа УДС переменного водоизмещения («Аргус») основывается на перекачке масла из прочных цистерн в эластичные мешки-вариаторы, что обеспечивает увеличение плавучести аппарата. Положительная плавучесть в данном случае возрастает на величину веса воды, объем которой эквивалентен объему вариатора. Дифферентовка производится путем перекачки масла в нос или в корму насосом дифферентной системы. На некоторых аппаратах («Мермайд») изменение дифферента осуществляется перемещением груза в горизонтальной плоскости, например — аккумуляторного бокса с помощью гидроцилиндра.

Система аварийного балласта

Многолетняя практика эксплуатации подводных обитаемых аппаратов показала, что иногда возникают достаточно неприятные ситуации, в которых пилот должен воспользоваться системой аварийного всплытия. Система аварийного всплытия предусматривает сброс аварийного балласта в случаях, когда невозможно использовать энергетическую установку для работы насосов и двигателей, когда произошло неуправляемое поступление забортной воды в системы аппарата или когда аппарат завяз в илистом грунте, и мощности вертикальных двигателей не хватает для того, чтобы размыть вязкий ил. В качестве аварийного балласта используют тяжелые аккумуляторные боксы, ртуть из дифферентных цистерн, якорьгайдроп, другое забортное оборудование, имеющее значительную массу и, наконец, свинцовые или металлические грузы. Сброс производится с помощью резервных аккумуляторных батарей или пиропатронов. Груз, прикрепленный к прочному корпусу, может отдаваться и вручную из кабины. Общий вес аварийного балласта должен рассчитываться с учетом максимально возможной отрицательной плавучести аппарата. Роль аварийного балласта выполняет и маневровая дробь, предназначенная для управления плавучестью («Триест-2»), размещенная в бункерах с электромагнитными затворами. Большинство аппаратов имеют возможность легко расстаться с выступающими за обводы легкого корпуса двигателями, манипуляторами и выносными штангами, в случае запутывания в сетях или тросах. Буй из синтактика, выкрашенный в
яркий оранжевый цвет, выпущенный на поверхность и связанный с аппаратом прочным длинным тросом, обозначает место аварии.

Энергетическая установка

Движение аппарата, работа основных элементов и систем, способность выполнять сложные задачи в подводном положении в течение длительного времени зависят от характеристик энергетической установки (ЭУ). В состав ЭУ входят источники энергии, преобразователи напряжения и токоведущие части. Источники энергии, применяемые на подводных аппаратах, подразделяются на аккумуляторные батареи, генераторы тока с тепловыми двигателями, топливные элементы и атомные энергоустановки. Подавляющее большинство подводных аппаратов (95%) имеют аккумуляторные батареи — свинцово-кислотные или щелочные (серебряно-цинковые, никелькадмиевые). Свинцово-кислотные аккумуляторы чаще всего ставятся на обитаемые аппараты и отличаются надежностью (около 1000 циклов заряд-разряд), простотой обслуживания и невысокой стоимостью. К их недостаткам следует отнести значительный вес, небольшую (30 Вгч/кг) удельную энергию (отношение запаса энергии к массе источника), нарушение работы при больших углах наклона аппарата. Серебряно-цинковые аккумуляторы («Си Клифф») в 4 раза эффективнее свинцово-кислотных, правда, они более чувствительны к колебаниям температуры, выдерживают не более 150 циклов заряд-разряд и стоят гораздо дороже. Удельная энергия никель-кадмиевых аккуму
ляторов («Наутил», «Бентос-5») близка по величине удельной энергии свинцово-кислотных. При большом ресурсе (до 2500 циклов), прочности и удобстве в эксплуатации никель-кадмиевые аккумуляторы имеют низкое напряжение (1,2 В на элемент) и высокую стоимость. Аккумуляторы, собранные в батарею, размещаются или внутри прочного корпуса («Алюминаут»), или снаружи — в боксах, залитых жидким диэлектриком и оборудованных клапаном для стравливания газов, выделяющихся во время и после зарядки. В системе компенсации внешнего давления используются мембранные или поршневые компенсаторы. На некоторых аппаратах («Шинкай», «Тоурс») применяются дизель-генераторы, подзаряжающие аккумуляторные батареи и обеспечивающие движение в надводном положении. Топливные элементы, прежде чем попасть на подводные аппараты, испытывались в 10 кВт-установке на борту американских ракет «Аполлон». В батарее, состоящей из топливных элементов, активные вещества располагаются во внешних резервуарах и подаются на электроды постепенно, по мере их расхода. Продолжительность работы определяется запасами активных (анодных) веществ и окислителя (катодного вещества). В качестве активных веществ могут использоваться кислородно-водородные, гидразин-перекисные и гидразин-кислородные реагенты («Стар-1», «Дин Квест»). Изза невысокой эффективности гидразиновые электрохимические генераторы пока не нашли широкого применения в подводной технике. К тому же при использовании топливных элементов с жидким электролитом не исключены протечки, коррозия, воздей
ствие сильно токсичных веществ на людей. Наиболее безопасным с этой точки зрения является применение в энергетических установках топливных элементов с твердым полимерным электролитом. Батарея из 130 таких элементов с активной площадью около 4 м2, обеспечивает мощность 17 кВт при напряжении 120 В и энергоемкости 96 кВт/ч. Для американской исследовательской подводной лодки «HP-1» была создана паротурбинная атомная энергетическая установка. Имея ряд преимуществ, атомные установки все же более пригодны для подводных лодок большого водоизмещения. Работы по созданию новых энергоустановок для подводных аппаратов ведутся по пути уменьшения габаритов и увеличения их удельной энергии.

Движительно-рулевой комплекс

Движительно-рулевой комплекс (ДРК) обеспечивает движение и маневрирование подводного аппарата в подводном и надводном положении. ДРК состоит из ходовых движителей, позволяющих осуществить поступательное движение, и маневровых движителей, служащих для вертикального перемещения, в том числе для безопасной посадки на грунт и маневрирования; поворотов, движения лагом, изменения направления движения реверсом, движения в узкостях. Пассивные рули и стабилизаторы, создающие управляющие усилия в результате взаимодействия с водой, из-за небольшой скорости большинства подводных аппаратов малоэффективны. Для выполнения сложных маневров в современных подводных аппа
ратах используются движители на поворотных колонках и гребные винты, установленные внутри горизонтальных и вертикальных шахт в легком корпусе. В качестве электропривода для ДРК используются электродвигатели постоянного и реже — переменного тока. Иногда применяют работающие от электрогидравлического насоса водометные движители — простые и надежные, но обладающие низким КПД и быстродействием («Дениз», «Танкай»). На многих аппаратах стоят гидравлические движители («МИР-1», «МИР-2»). Электродвигатели постоянного тока размещаются в отдельном прочном корпусе. Выходной вал такого двигателя приходится уплотнять сальниками, при больших плотностях тока существует опасность перегрева обмоток. Этот вариант используется для аппаратов малых глубин. Преимущества электропривода постоянного тока — простота регулирования скорости, малая масса, высокий КПД и надежность. Погружные двигатели постоянного тока размещаются в корпусах, заполненных жидким диэлектриком. Для компенсации внешнего давления корпуса снабжены компенсаторами. Жидкий диэлектрик (керосин или масло) обладает хорошей теплопроводностью, следовательно, возможно повышение электромагнитных нагрузок на двигатель. Недостатки подобных двигателей — вероятность снижения изоляции обмоток из-за проникновения вместе с жидкостью щеточной пыли и трение вращающихся частей о диэлектрик. Еще один вариант подводного электродвигателя — двигатель переменного тока, работающий непосредственно в воде. Масса такого двигателя, по сравнению с массой двигателя постоянного тока той же мощности, меньше, но использование пере
менного тока требует наличие преобразователя, размещенного внутри ПК или в отдельном прочном корпусе, что значительно увеличивает массу подводного аппарата. Количество движителей и места их установки определяются конструктивными особенностями и назначением подводного аппарата. Принципу разумной достаточности удовлетворяет схема с тремя движителями: кормовым маршевым в поворотной насадке и двумя бортовыми, меняющими положение в вертикальной плоскости в пределах 180° («МИР-1», «МИР-2»), Подводный обитаемый аппарат «Пайсис» оснащен всего двумя бортовыми движителями, установленными на поворотной штанге. Водолазный аппарат «Осмотр» имеет три пары жестко фиксированных движителей. Два маршевых движителя (6 кВт) размещены по бортам в кормовой части, два вертикальных (3 кВт) — стоят в носовой и кормовой шахтах легкого корпуса, два лаговых погружных электродвигателя постоянного тока (1 кВт) закреплены над уравнительно-дифферентными цистернами. Гребные винты движителей, выходящие за пределы ЛК, защищают насадками, оберегающими лопасти винтов от соприкосновения с твердыми телами. Кроме того, насадка обеспечивает сужение потока и увеличение скорости протекающей сквозь лопасти винта воды, то есть увеличивает КПД движителя.

Система гидравлики

В состав системы гидравлики входят: силовой насосный агрегат, обеспечивающий необходимое давление в системе, клапаны управления, компенсаторы, уравнивающие
внутреннее и наружное давление, аккумуляторы рабочей жидкости, трубопроводы и исполнительные механизмы — гидроцилиндры и гидромоторы, приводящие в движение гребные винты, выдвижные и поворотные устройства, манипуляторы и подводные инструменты. В качестве рабочей жидкости применяется масло, которое помимо основной функции — переноса гидравлической энергии — обеспечивает смазку исполнительных механизмов. Насосный агрегат подает рабочую жидкость для привода гидродвигателей и цилиндров и состоит из погружного электродвигателя с одним или несколькими насосами. Насосы заключены в кожухи, залиты маслом и могут управляться по производительности и изменению направления потока. Чаще всего подводные аппараты оснащаются гидронасосами и гидромоторами, прошедшими хорошую проверку в авиации и космической технике. Регулировка направления подачи рабочей жидкости, ее расхода и давления осуществляется при помощи приборов, информирующих о давлении масла в системе, температуре, уровне масла в компенсаторах, токе электродвигателя насосной станции. Проблемы, возникающие при работе гидродвигателей, связаны с увеличением вязкости и сжимаемости масла, а также с падением давления в системе при увеличении глубины погружения. В результате снижается и без того невысокий КПД гидродвигателей. Тем не менее широкое применение на подводных аппаратах гидравлических двигателей обусловлено возможностью быстрого пуска и остановки, широким диапазоном скоростей и мощностей.
Подавляющее большинство подводных аппаратов оснащены манипуляторами или
механическими «руками». Часто один из манипуляторов удерживает аппарат в нужном для работы у объекта положении, а второй используется в качестве рабочего инструмента. Самые первые манипуляторы оснащались ручным приводом с механическими тягами, проходящими через вводы в прочный корпус. Современные манипуляторы имеют гидравлический привод и приводятся в движение при помощи выключателей, вмонтированных в рукоятку управления — джойстик. Простые движения управляются клапанами выключателя потока, более сложные — пропорциональными клапанами, причем скорость движения зависит от амплитуды отклонения ручки джойстика. Движение кисти или схвата механической «руки», сжатие и его усилие управляются электрогидравлическими устройствами — сервоклапанами, обеспечивающими расход жидкости, пропорциональный поступающему к ним электрическому сигналу. Для выполнения сложных подводных операций манипулятор должен выполнять как минимум шесть независимых движений. Функциональные возможности манипуляторов расширяются за счет применения различного типа подводных инструментов. Гидравлические инструменты имеют гидравлические разъемы и стыкуются с манипулятором. Этот инструмент может быть линейным (тросорезы) и вращающимся (различные диски и сверла). Главные требования при отборе и проектировании гидравлических систем, манипуляторов и инструментов — надежность, высокая производительность, компактность и небольшой вес.
Система жизнеобеспечения экипажа Система жизнеобеспечения экипажа (СЖО) служит для обеспечения жизнедеятельности экипажа подводного аппарата во время погружения. Нормальная продолжительность рабочего спуска составляет 10-12 часов, аварийный же запас СЖО насчитывается как минимум на трое суток. Стандартный набор системы состоит из средств: — обеспечения кислородом; — поглощения углекислого газа и вредных примесей; — поддержания нормального температурного и влажностного режимов; — газоанализа и индикации параметров атмосферы обитаемого отсека. С того момента когда закрывается люк подводного аппарата, экипаж, отрезанный от внешнего мира, остается в обитаемом отсеке. Воздух в отсеке по своему составу не должен отличаться от обычного атмосферного воздуха, которым дышит человек. Содержание кислорода в атмосфере на уровне моря обычно составляет 21%. Считается безвредным снижение содержания кислорода до 16%. Если уровень кислорода снижается до 10%, то человек начинает испытывать гипоксию, признаками которой являются — слабость, посинение губ, нарушение координации движений и, в конце концов, потеря сознания. Повышенное парциальное давление кислорода вызывает кислородное отравление, на ранних стадиях которого у человека кружится голова, возникает тошнота, мышцы лица начинают непроизвольно подергиваться. Еще одной неприятностью грозит превышение концентрации кислорода. При превышении объемной
концентрации кислорода порога в 25% материалы, огнестойкие в нормальных условиях, становятся горючими. Даже сталь в атмосфере 100% кислорода будет сильно гореть. Поэтому все материалы, которые используются в обитаемом корпусе, должны быть максимально пожаростойкими. Конечно, содержание кислорода в отсеке определяется не по физиологическим симптомам членов экипажа, для этого служат специальные приборы-газоанализаторы, позволяющие с большой точностью определить концентрацию кислорода в пределах 0-25%. Газоанализаторы снабжены звуковыми и световыми сигнализаторами, которые предупреждают о низкой или высокой объемной концентрации. Кислород, необходимый для дыхания, хранится в баллонах. Баллон в рабочем положении снабжается редуктором с регулятором расхода. В среднем один человек потребляет около 25 л кислорода за час. Таким образом, экипажу из трех человек на трое суток понадобится около 5400 л кислорода. В результате жизнедеятельности человеческий организм выделяет углекислый газ и вредные примеси, такие, как СО, h3S и др. В обитаемом отсеке желательно поддерживать концентрацию углекислого газа на уровне 0,03%. Допустимым пределом концентрации СО2 считается 1,5%. В подводном аппарате очистка воздуха осуществляется путем прокачки воздуха вентиляторами через емкости, заполненные специальными химическими веществами-поглотителями. О необходимости регенерации «воздушной квинтэссенции» еще в 1620 году говорил голландец Корнелиус ван Дреббель. В качестве поглотителя используются гидрооксид натрия или лития. Помимо рабочих кассет
на борту обязательно должен находиться резервный запас герметично упакованного поглотителя. Его количество рассчитывается исходя из таких параметров, как среднее выделение человеком CO2, (20 л/ч) и поглотительная способность 1 кг вещества (более 100 л). Для поглощения других вредных примесей, попадающих в атмосферу отсека, используется активированный уголь. Кроме газоанализаторов, концентрацию газов в атмосфере отсека можно определить с помощью комплекта измерительных индикаторных трубок, начинка которых меняет цвет при наличии в воздухе определенного газа. Резервирование средств газоанализа является важным моментом при комплектации системы жизнеобеспечения. Во время погружения аппарата обитаемый корпус постепенно охлаждается, на стенках появляются капли конденсата. Снизить избыточную влажность можно, если поместить в одну из кассет гранулы силикагеля и менять его по мере насыщения влагой. Контроль таких параметров атмосферы, как температура, влажность, давление, осуществляется приборами — термометром, гигрометром и барометром. Обычно во время глубоководных спусков аппарат охлаждается и в кабине устанавливается температура 10—12°С. Чтобы сохранить комфортные условия работы, гидронавтам приходится надевать шерстяную одежду и теплые комбинезоны. Что должны иметь гидронавты на случай непредвиденных и аварийных ситуаций? Во-первых, запасы кислорода и поглотителя, во-вторых, резерв питьевой воды и пищи, в-третьих, хорошо скомплектованную аптечку и, в-четвертых, наборы инструментов.
Внешняя коммутация электрооборудования подводного аппарата обеспечивается кабельными вводами, герморазъемами и маслозаполненными узлами. Часто причиной возникновения на борту пожара является короткое замыкание под воздействием морской воды, проникшей через поврежденные уплотнения гермовводов. Для предотвращения пожара устанавливается аварийный выключатель, дистанционно отключающий питание всех потребителей. В случае активизации горения и задымления в отсеке экипаж может использовать углекислотные огнетушители и аварийные дыхательные аппараты, рассчитанные на 4-5 часов работы. И наконец интересующий многих вопрос о так называемой фановой системе. На самом деле этот вопрос решается достаточно просто при помощи герметично закрывающихся пластиковых и полиэтиленовых емкостей, причем, как показывает практика, они используются довольно редко.

Навигация и связь

Экипаж подводного аппарата во время погружения в любой момент времени должен иметь возможность определить свои координаты и связаться как с судном обеспечения или катером на поверхности, так и с другими подводными аппаратами, работающими под водой. В состав навигационного оборудования, которым оснащается аппарат, входят: гирокомпас, магнитный компас, гидролокатор кругового обзора и гидроакустическая навигационная система. Компас дает возможность пилоту двигаться по выбранному маршруту. Гидролокатор нужен при поиске объектов и для обеспече
ния безопасного прохода по сложному рельефу. Гидроакустическая система работает совместно с транспондерами и судовой навигационной системой. Транспондеры, снабженные излучателями, вместе с блоками плавучести, световыми маяками и радиомаяками опускаются на дно в районе выбранного полигона, где уже достаточно хорошо известен рельеф в результате промеров с судна. Далее проводится калибровка полигона, в процессе которой каждый маяк опрашивается с судна с разных сторон. Данные об абсолютных координатах судна, проходящего над маяками, поступают с нескольких спутников. В результате калибровки получают точные координаты маяков и текущие наклонные дальности до них. Блок навигации, установленный на аппарате, измеряет время между запросами маяков и ответами от них и вычисляет расстояние от маяков до подводного аппарата. На экране дисплея оператор видит точки постановки маяков и точку положения аппарата в данный момент. На поверхность транспондеры вызываются с судна или с аппарата. Транспондеры с блоками плавучести отсоединяются от груза и всплывают на поверхность. Связь подводного аппарата с судном обеспечения или береговой базой осуществляется при помощи УКВ-радиостанции, имеющей дальность действия более 10 миль. Система подводной акустической связи устанавливается на аппарате, судне и катере. Для передачи информации в системе используется распространение акустических волн в воде. Аппаратура подводной связи позволяет передавать речь и данные по телеметрическому каналу.
Средства подводного освещения
Поток солнечного света, попадая в морскую воду, быстро ослабляется с увеличением глубины. Только сотая часть его доходит до глубины 100 м. Даже в яркий солнечный день сумерки сменяются кромешной тьмой на глубине 200 м. Естественно, что подводному аппарату, выполняющему задачу по обнаружению, наблюдению, теле- и киносъемке, нечего делать на больших глубинах без искусственного освещения. Еще в XIX веке в качестве подводных светильников использовались масляные горелки. Их сменили электрические лампы, сначала — с угольной, а потом — с вольфрамовой нитью накаливания. В тридцатые годы XX столетия А. А. Гершун разрабатывал и испытывал лампы с зеркальными колбами. С появлением новых материалов и технологий, подводные светильники становились более надежными и безопасными. С какими же проблемами приходится сталкиваться проектировщикам подводных световых приборов? Во-первых, это специфические оптические свойства морской воды, оказывающей влияние на распространение света. Световой поток, пройдя слой воды, выйдет из него ослабленным. Не вдаваясь в подробности, отметим, что ослабление света происходит из-за поглощения и рассеяния. Поглощение — процесс превращения части потока световой энергии в тепловую и химическую энергию, вызванный избирательным поглощением молекулами воды и растворенным в воде веществом. Рассеяние вызывается неодинаковой плотностью морской воды и присутствием в ней взвешенных частиц и заключается в откло
нении светового потока от первоначального направления в результате многократного столкновения с частицами. Интенсивность поглощения и рассеяния зависит от спектрального состава излучения. Так, поглощение велико для длинноволнового (красного) участка спектра, а рассеяние сильнее в коротковолновом (фиолетовом) диапазоне. Суммарное воздействие поглощения и рассеяния определяет пропускание света морской водой. Кривая пропускания имеет пик в области от 450 до 550 нм., то есть через обычную морскую воду с меньшими проблемами пройдет часть света со спектром от фиолетового до желто-зеленого. Максимум спектрального излучения источника света, который необходимо иметь на подводном аппарате, должен попасть в область наибольшего пропускания света морской водой и приближаться к 500 нм. Кроме этого условия, желательно, чтобы светоотдача (отношение светового потока лампы к потребляемой мощности) была как можно большей. В 1959 году к инертному газу, заполняющему обычную лампу накаливания, добавили йод. Это обеспечило сохранение постоянной яркости почти на весь срок службы лампы. Так появились галогенные лампы. Сейчас эти лампы, достаточно надежные и компактные, широко используются в световых приборах подводных аппаратов. Отрицательной стороной галогенных ламп является низкая светоотдача (20 лм/Вт) и, хотя и широкий, но все-таки смещенный в красно-желтую область спектр излучения. Другой тип ламп — газоразрядные. Они светят благодаря электрическому разряду в газовом наполнителе. Наполнителем служат находящиеся под давлением пары ртути. В результате добавления к рту
ти йодидов таллия и диспрозия получаются йодно-таллиевые лампы с высокой светоотдачей (75 лм/Вт). Максимум излучения таких ламп попадает как раз в зеленую часть спектра. К недостаткам газоразрядных ламп следует отнести наличие пуско-регулирующей аппаратуры, длительный период разгорания, необходимость применения помехоподавляющей аппаратуры, обязательное охлаждение перед повторным включением. Третий вариант — натриевые лампы высокого давления с широким спектром и светоотдачей, превышающей 100 лм/Вт. После выбора источника света определяются конструктивные особенности светового прибора. Стандартный состав такого прибора: источник света, корпус с патроном, отражатель, защитный иллюминатор или стеклооболочка, герморазъем для подключения кабеля питания. В приборах, рассчитанных на небольшие глубины, источник света может работать непосредственно в воде. Источник света приборов с рабочей глубиной свыше 200 м защищается от внешнего давления прочным стеклом. Основными конструкционными материалами для изготовления корпусов светильников являются: алюминий и его сплавы, титан и нержавеющие стали. При достаточной прочности корпуса прибора он должен соответствовать минимальным массогабаритным характеристикам. Размеры светового прибора сильно зависят от формы и габаритов отражателей, которые подбираются в каждом случае по кривой силы света, распределенной в пространстве. Для подводных работ нужны светильники как с узким направленным светом, так и с большим углом рассеяния. На практике, в зависимости от задач каждого погружения и оптических
характеристик воды в районе погружения, просто меняют отражатели, не снимая сам прибор с подводного аппарата. Еще одной важной особенностью является размещение световых приборов на аппарате. Влияние дымки обратного рассеяния заставляет увеличивать базу размещения приборов, то есть разносить их подальше от приемника. Увеличение же количества светильников и мощности их источников положительного эффекта не приносит. Общий срок службы средств подводного освещения определяется грамотной эксплуатацией и периодическим ТО, при котором особое внимание необходимо уделять чистоте деталей и тщательной проверке герметизирующих колец и прокладок.

Приборное оборудование

Приборное оборудование подводных аппаратов состоит из фото- и телеаппаратуры, комплекса гидрофизических датчиков и пробоотборников. Первая подводная фотография была получена в 1856 году обычной камерой, помещенной в деревянный бокс со стеклом вместо иллюминатора. Англичане Томпсон и Кенион опустили камеру в реку Уэй на глубину 5 м. Несмотря на то что бокс затек, на фотопластинке осталось размытое изображение. Увеличить глубину погружения камеры, используя водолазный колокол, и улучшить качество изображения удалось французу Базину. Большой вклад в развитие подводной фотографии внес его соотечественник Луи Бутан. В своих фотобоксах Бутан использовал кассеты со сменными фотопластинами и дистанционно-управля
емый электрический затвор. В 1892 году Бутан сделал первую свою подводную фотографию; это был снимок средиземноморского краба. Последняя его камера была помещена в короб из меди и стали. В качестве поплавка, плавающего на поверхности, Бутан использовал пустую винную бочку. В январе 1927 года в журнале «Национальная География» появилась первая цветная подводная фотография, полученная Мартином и Ленгли в районе отмели Драй-Тортугас. В 1931 году американец Гарольд Эджертон из Массачусетского технологического института в качестве источника света предложил использовать синхронизированную с камерой вспышку. С середины сороковых годов подводная фотография становится неотъемлемой частью всех подводных работ, в том числе аварийно-спасательных и исследовательских. В 1959 году «Папе Флэшу», так прозвали Эджертона на «Калипсо», удалось получить фотографии морского дна на глубине 8500 м.
В наше время появились удобные, небольшие фотокомплексы для подводных аппаратов, выпускаемые уже серийно. Такой фотокомплекс состоит из фотокамеры с объективом, специально рассчитанным для съемок в морской воде, и вспышки. Камера с большим запасом пленки и вспышка с энергией от 100 до 1000 Дж заключены в термобоксы и чаще всего устанавливаются на поворотных кронштейнах. Качество получаемых снимков зависит от ряда факторов, таких, как свойства морской воды, оптические параметры объектива и иллюминатора, мощность и цветовая температура осветителя, чувствительность фотоматериала, взаимное расположение на аппарате фотокамеры и вспышки. Морская вода ока
зывает отрицательное влияние на качество фотографии, которое характеризуется искажением цветопередачи, ухудшением качества изображения с увеличением расстояния, уменьшением угла поля зрения и дефицитом освещения. Несмотря на эти неблагоприятные особенности, подводная фотография широко применяется и развивается. Для обследования участка дна Средиземного моря, где произошло кораблекрушение, на подводный обитаемый аппарат «Ашера» были установлены две 70-миллиметровые камеры с фокусным расстоянием в воде 60 мм. Участок дна, покрытый решеткой, снимался с высоты 5 м. Подводные фотокамеры также используются на подводных аппаратах для маршрутной съемки и съемки наиболее интересных объектов с близкого расстояния. Подводные телевизионные системы появились в 1940-х годах. Тогда это были обычные студийные черно-белые установки, помещенные в громоздкие боксы. Прежде чем стать миниатюрными камерами с высокими четкостью и чувствительностью, телевизионные установки прошли большой путь развития. «Бабушка» современных подводных камер — автоматическая камера фирмы «Хайдропродактс», совершила историческое погружение на батискафе «Триест» в Марианскую впадину. Перед подводными телевизионными системами подводных аппаратов ставятся следующие задачи: выбор объектов для фотосъемки с использованием видеомонитора в качестве видоискателя, телевизионный обзор донной поверхности при геологических и биологических исследованиях. Телевизионная камера оснащается трансфокатором, позволяющим увеличить картинку на мониторе, в этом случае можно не вклю
чать движители аппарата для приближения к исследуемому объекту. Поворотные головки, поворачивающие камеры в горизонтальной и вертикальной плоскостях, позволяют увеличить поле зрения. Для улучшения качества изображения и увеличения дальности видимости, кроме усиления чувствительности телевизионных камер, грамотного подбора объектива и иллюминатора, большую роль играет правильное размещение камеры относительно световых приборов. Это позволяет значительно снизить интенсивность световой дымки, которая сильно ухудшает качество видеозаписи. Комплекс гидрофизических датчиков позволяет измерить, преобразовать и записать в цифровом виде ряд параметров морской воды. В состав комплекса обычно вхо
дят датчики температуры, электропроводности, давления, растворенного кислорода, концентрации ионов водорода, скорости течения, скорости звука, прозрачности, проводимости, высокой температуры. Большая часть геологических и биологических образцов попадает в бункеры подводного аппарата при помощи манипуляторов. Сачки, сетки и пробоотборники для взятия образцов снабжаются ручками для удобного захвата кистью манипулятора. На аппарате могут устанавливаться батометры малой и большой емкости для отбора проб воды. Мягкие осадки и биологические образцы вместе с водой закачиваются в контейнер помпой через широкий рукав. Это позволяет получить большое количество морских организмов, целых и невредимых.


Источник: Подводные обитаемые аппараты / Д. В. Войтов.

subboat.com

Отправить ответ

avatar
  Подписаться  
Уведомление о